
PIanen

Workshop

und Konfigurieren
(PuK'06)

Jürgen Sauer
(Editor)

K l z t r t] 6
1 4 - 1 9 . . J U N E 2 t f E l 6

BneMEN, G iERMANY

29'n Annual German Conference on
Artificial I ntel I igence

http ://www. a i-conference.de/ki06

rsBN 3-88722-670-4
Universität Bremen

Vorwort

Die Fachgruppe Planen/ Scheduling und Konfigurieren/ Entwerfen im FB „Künstliche

Intelligenz“ der GI vereint Forscher und Praktiker in den genannten Bereichen und

bietet ein gemeinsames Forum zum Austausch von Ergebnissen und Erfahrungen.

Die Bereiche Planen, Scheduling, Konfigurieren und Entwerfen verwenden ähnliche

Methoden und KI-basierte Techniken, aber häufig findet kein gemeinsamer

Erfahrungsaustausch statt. Genau diese Lücke versucht der PUK-Workshop zu

schließen, indem neue Fragestellungen, Lösungskonzepte und realisierte Systeme

vorgestellt werden können, die zu einem der beteiligten Forschungsgebiete gehören.

Der PUK geht in diesem Jahr in die 20. Runde; eine lange, vielfältige und bewährte

Tradition, die insbesondere aufzeigt, wie essentiell dieses Themengebiet in der KI-

Forschung verankert ist. Der 20. PuK ist auch der Anlass zu einem Themenheft der

KI-Zeitschrift, in dem auf ältere, aktuelle und zukünftig mögliche Entwicklungen

eingegangen werden soll. Aus diesem Grund ist der Workshop zweigeteilt. In einem

Teil werden aktuelle Ergebnisse aus den Bereichen Planen und Konfigurieren

vorgestellt und diskutiert. Im zweiten Teil werden in einer größeren Runde das

Konzept und die Inhalte des Themenheftes vorbereitet.

Organisation
PD Dr. Stefan Edelkamp Universität Dortmund
Tel. ++49-231-755-5809 Lehrstuhl V
Fax ++49-231-755-5802 Fachbereich Informatik
stefan.edelkamp@cs.uni-dortmund.de Otto-Hahn-Strasse 14
ls5-www.cs.uni-dortmund.de/~edelkamp 44227 Dortmund

Apl. Prof. Dr. Jürgen Sauer Universität Oldenburg
Tel. ++49-441-798-4488 Fakultät II, Department
Fax ++49-441-798-4472 für Informatik, Abt.

Wirtschaftsinformatik
juergen.sauer@uni-oldenburg.de Uhlhornsweg 84
www.wi-ol.de 26129 Oldenburg

1

Inhalt

External Program Model Checking

Stefan Edelkamp, Shahid Jabbar,

Dino Midzic, Daniel Rikowski, and Damian Sulewski

University of Dortmund

Requirements-driven Software Development System (ReDSeeDS) – A Project

Outline

Thorsten Krebs and Lothar Hotz

University of Hamburg

SemanticWeb Technology as a Basis for Planning and Scheduling Systems

Bernd Schattenberg, Steffen Balzer and Susanne Biundo

University of Ulm

The Potted Plant Packing Problem, Towards a practical solution

Rene Schumann and Jan Behrens

OFFIS Oldenburg

2

Sauer
Textfeld
20

Sauer
Textfeld
26

Sauer
Textfeld
37

Sauer
Textfeld
3

External Program Model Checking

Stefan Edelkamp, Shahid Jabbar,
Dino Midzic, Daniel Rikowski, and Damian Sulewski

Computer Science Department
University of Dortmund
Otto-Hahn Straße 14

Abstract. To analyze larger models for model checking, external algo-
rithms have shown considerable success in the verification of communi-
cation protocols. This paper applies external model checking to software
executables. The state in such a verification approach itself is very large,
such that main memory hinders the analysis of larger state spaces and
calls for I/O efficient exploration algorithms. We propose a general state
expanding algorithm based on a search tree skeleton with outsourced
states. External collapse traded time for space. Additionally, heuristics
accelerate the search process, guide it towards the error and shorten the
length of the counterexample. Different caching and exploration strate-
gies are evaluated. We found a counterexample in a C++-program for
the Dining Philosophers’ problem with 300 philosophers in a success-
ful exploration lasting for over 100 hours while consuming 0.5 gigabytes
RAM and 19 gigabytes hard disk.

1 Introduction

Model checking is a formal verification method for state based systems, which
has been successfully applied in various fields, including process engineering,
hardware design and protocol verification. Recent applications of model check-
ing technology deal with the verification of software implementations (rather
than checking a formal specification). The advantage of this approach is mani-
fold when compared to the modus operandi in the established software develop-
ment cycle. For safety-critical software, the designers would normally write the
system specification in a formal language like Z [35] and (manually) prove for-
mal properties over that specification. When the development process gradually
shifts towards the implementation phase, the specification must be completely
rewritten in the actual programming language (usually C++). On the one hand,
this implies an additional overhead, as the same program logic is merely re-
formulated in a different language. On the other hand, the re-writing is prone
to errors and may falsify properties that hold in the formal specification.

Modern software model checkers rely on the extension or implementation of
architectures capable of interpreting machine code. These architectures include
virtual machines [38] and debuggers [26]. Such unabstracted software model
checking does not suffer from any of the problems of the classical approach.

3

Neither the user is burdened with the task of building an error-prone model of
the program, nor there is a need to develop a parser that translates (subsets
of) the targeted programming language into the language of the model checker.
Instead, any established compiler for the respective programming language can
be used.

Given that the underlying virtual machine works correctly, we can assume
that the model checker is capable of detecting all errors and that it will only re-
port real errors. Also, the model checker can provide the user with an error trail
on the source level. Not only does this facilitate to detect the error in the actual
program, the user is also not required to be familiar with the specialized model-
ing languages, such as Promela. As its main disadvantage, unabstracted software
model checking may expose a large state description, since a state must memorize
the contents of the stack and all allocated memory regions. As a consequence,
the generated states may quickly exceed the computer’s available memory. More-
over, larger state descriptions slow down the exploration. Therefore, the most
important topic in the development of an unabstracted software model checker
is to devise techniques that can handle the potentially large states.

The list of techniques for state space compression is long (cf. [3]): partial-
order reduction prunes the state space based on stuttering equivalences tracking
commuting state transitions, symmetry detection exploits problem regularities
on the state vector, binary state encoding allows to represent larger sets of states,
abstraction methods analyze smaller state spaces inferred by suitable approxima-
tions, and bit-state hashing and hash compaction compress the state vector down
to a few bits, while failing to disambiguate some of the synonyms. One important
aspect (not mentioned in [3]) are search heuristics that guide the search process
to the location of the error. Such directed model checking approaches have shown
significant advances in the verification of communication protocols [7], selective
mu-calculus [32], Java programs [10] and computer hardware [2].

But even with refined exploration techniques, model checking is bounded by
the main memory resources. Several memory-limited model checking algorithms
have been developed, e.g. [8, 12, 17] but still the core limitation hurdles the model
checking of large programs. Infact, the use of virtual memory as a remedy to
this problem can instead slow down the performance significantly. Since a general
purpose vitual memory scheme, as is offered by many operating systems, does not
know anything about the future memory accesses in a model checking algorithm,
excessive page faults are inevitable.

External memory algorithms [31] use secondary storage devices, such as hard
disk, to solve large problems - the problems that have a space requirement
larger than the main memory available. They differ from the vitual memory
scheme and are more informed about the future access to the data. Milestones
for external model checking are [36, 21]. External search algorithms have also
shown remarkable performance in the large-scale analysis of games [20], where
external breadth-first search has fully explored a single-agent challenge using
1.4 terrabytes hard disk space. Recently, this form of large-scale exploration
has been ported to enhance (directed) model checking. In [15] an external and

4

guided derivate of the explicit-state model checker SPIN has been introduced.
As external model checking refers to the independent exploration of set of states
the algorithms have been successfully parallelized [16], showing an almost linear
speed-up. Based on the work of [33] this large-scale model checking algorithm
has been extended to the validation of LTL properties [5].

For the purpose of this paper, we consider the external exploration in model
checking unabstracted programs on the object-code level. As systems states for
program executables are less accessible and highly dynamic, the algorithmic
approach deviates considerably from previous work. The paper is structured
as follows. First we introduce to program model checking on the object-code
level and to the system states of a program. Next we turn to large-scale model
checking and its limitation for the validation of programs. Then we propose
the framework for external program model checking that we have developed. It
consists of a compromise between main and external memory usage based on an
annotated search tree skeleton. For the presentation of the approach we consider
the distributed storage of states. Afterwards, we turn to the implementation of
an external C++ model checker and present obtained time and space trade-offs
in the experiments.

2 Object-Code Program Model Checking

The state of a computer program consists of static components, such as the
global variables, as well as dynamic components, like the program stack and the
pool of dynamically allocated memory.

Figure 1 shows the components that form the state of a concurrent program
for object-code model checking. As model checking is particularly interesting for
the verification of concurrent programs, the state description include all relevant
information about an arbitrary number of running processes (threads). Threads
may claim and release exclusive access to a resource by locking and unlocking it.
Resources are usually single memory cells (variables) or whole blocks of memory.
The state description include information about the location and size of dynam-
ically allocated memory blocks, as well as the allocating thread. The memory
is divided in three layers: The outer-most layer is the physical memory which
is visible only to the model checker. The subset VM-memory is also visible to
the virtual machine and contains information about the main thread, i.e., the
thread containing the main method of the program to check. The program mem-
ory forms a subset of the VM-memory and contains regions that are dynamically
allocated by the program. Before the next step of a thread can be executed, the
content of machine registers and stacks must refer to the state immediately after
the last execution of the same thread, or if it is new, directly after initializa-
tion. The memory-pool is used to manage dynamically allocated memory. The
lock-pool stores information about locked resources.

An increased difficulty of program model checking the object code lies in the
handling of untyped memory as opposed by Java, where all allocated memory can

5

Fig. 1. System state of a program.

be attributed to instances of certain object types. Also, a standardized interface
for multi-threading frequently does not exist.

3 External Model Checking

External model checking algorithms explicitly manage the memory hierarchy and
can lead to substantial speedups compared to caching and pre-fetching heuristics
of the underlying operating system, since they are more informed to predict and
adjust future memory access.

External guided model checking refers to early results of externalizing the AI
search algorithm A* [28] for optimal plan-finding in single-agent challenges. A*
is a single-source shortest-path implicit graph algorithm with included estimate
costs. When ran on virtual memory, A* becomes I/O bound due to excessive page
faults. External A* [6] operates on a matrix of files (buckets) that is addressed
by the generating path length and the heuristic estimate. Each access to a file is
sequential and buffered. Duplicate elimination is delayed [19]. Based on External
A*, in [15] an experimental explicit-state model checker for safety properties has
been implemented on top of SPIN [13], parallelized [16] and extended to LTL
properties [5]. As designed for error detection, all external algorithms operate

6

on-the-fly. The search for safety properties is shown to be I/O optimal1, while
for LTL properties the exact I/O complexity is still open2.

Different to the approach presented below, the externality applied to tradi-
tional model checking is strict, so that main memory resources remain constant
during the verification run. The set of states in the current bucket and the set of
generated states are all contained on disk and streamed during bucket expansion.
This allows to pause and resume the exploration at any given state. However,
storing all states in program model checking individually on disk, challenges
existing hardware resources.

Exploiting redundancies using a symbolic representation with decision dia-
grams has been successfully applied and externalized in the context of AI plan-
ning [4]. Each bucket in External A* is represented by and stored as a BDD.
On the other hand, the highly dynamic structure of states in program model
checking does not suggest the usuage of BDDs. Therefore, we have relaxed the
requirement of a constant main memory.

4 The Algorithm

The general state-expanding algorithm we propose is based on the idea of mini-
states. Essentially, a mini-state is a pointer to a full system state residing on the
secondary memory. A mini-state consists of the hash value of its corresponding
state, a pointer to the state - in the form of a file pointer, and its predecessor
information to reconstruct the solution path. Additional information includes its
depth and its heuristic estimate to the target state. All in all, a mini-state has
a constant size in contrast to a state that can change its size due to dynamic
memory allocation.

For the sake of brevity, we restrict to properties that can be validated by
looking at a state. Recall that in general state-expanding algorithms, full states
have to be accessed either to get explored or to be referred to for duplicate
detection.

4.1 Externalization

In a search algorithm a full state is only needed in two scenarios: expansion and
duplicate detection. Exploiting the idea of mini-states, we propose to perform
the search on a tree skeleton defined on the mini-states, while actual states reside
on the secondary memory. A request for expansion now reads the state from the
disk based on the file pointer stored in the corresponding mini-state. Once read,

1 O(sort(|E|)/p+scan(|V |)) I/Os for an undirected state space graphs with consistent
estimate, where |V | and |E| are the number of traversed states and transitions, p is
the number of processors and where scan(n) and sort(n) are the I/O complexities
to scan and sort n objects.

2 The algorithms suggested amounts to O(sort(|E|)/p+t·scan(|V |)) I/Os for a general
state space graphs with consistent estimate, where t is the depth of the solution.

7

ExpandExtern(mini-state s)
x← Read(s)
for x′ ∈ expand(x)

c← hash(x′)
dup← false
for s′ ∈ H[c]

if (Read(s′)=x′)
dup← true; break

if (dup = false)
{allocate mini-state s′′}
s′′.pred← s
s′′.o← x.code(x′)
Write(x′)

Fig. 2. General state expansion with external storage: Externalization of state in a
search tree using a cache and an external state pool (left). Colored nodes state in the
cache, hollow nodes illustrate mini-states without any representation in main memory.
Pseudo-Code (right)

the state is expanded and its children are again saved in the form of mini-states
in the internal memory and as full states on the secondary memory.

Duplicate detection is done based on a hash-table storing only the mini-
states. The hash value of a mini-state is the hash value of the full state and is
calculated when a state is generated.

In the worst case, we perform one I/O operation for every access to a state.
To lessen the average number of I/O operations, we associate an internal cache
data structure that allows to retrieve and store in main memory, a small set of
states from secondary memory. Though this cache seems very much like virtual
memory as offered by almost all operating systems, it can be configured to follow
the best replacement strategy suited to the search algorithm. The cache principle
is illustrated in Figure 2 (left).

The advantage of external state representation is that we can restore each
state that we want from disk, even if it is not in main memory. To do so, we let
each mini-state also refers to a file pointer location on disk. In case the efforts
for state reconstruction become too large we can change to external states. Once
read, the external state becomes full states in the search tree.

The pseudo-code for external search is based on completing mini-states from
disk is given in Figure 2 (right). For a mini-state s, s.o denotes the transition
(e.g. the sequence of machine instructions), which transforms the predecessor
s.pred into s. Similarly, for a full state x, x.code(x′) denotes the operation which
transforms x to it’s successor state x′. Note, that transition have a constant-sized
representation, which is usually the program counter of a thread running in x.
The notion expand(x) refers to the expansion of a full state x and generating a

8

ExpandCollapse(mini-state s)
(x1, . . . , xk)← Read(s)
for (x′

1, . . . , x
′
k) ∈ expand(x1, . . . , xk)

(c1, . . . , ck)← hash(x′
1, . . . , x

′
k)

dup← false
for s′ ∈ H[c1, . . . , ck]

if (Read(s′)=(x′
1, . . . , x

′
k))

dup← true; break
if (dup = false)
{allocate mini-state s′′}
s′′.pred← s
s′′.o← x.code(x′)
H[c1, . . . , ck]← H[c1, . . . , ck] ∪ s′′

Write(x′
1, . . . , x

′
k)

Fig. 3. General state expansion with external storage and collapse compression. Ex-
ternalization of state in a search tree using caches and distributed state memorization.
Colored nodes illustrate partial state information, hollow nodes illustrate mini-states
without any information (left). Pseudo-code (right).

list of successors. The hash table H contains the mini-state representatives of
all previously generated states.

4.2 External Collapse Compression

Either in main or on secondary memory, storing the entire state information
individually is inefficient. A state consists of several parts: stack, memory pool,
global variables, etc. A typical transition or a program statement changes only
some of them, resulting in several states having common parts. Expoiting these
redundancies can lead to a compression scheme where common parts are stored
only once.

Collapse compression [14, 22] is a sophisticated approach to store states in an
efficient way. Collapsing is based on the observation that although the number of
distinct states can become very large, the number of distinct parts of the system
are usually smaller. These parts of the state can be shared across all the visited
states that are stored, instead of storing the complete encoding of state every
time a new state is visited. So, different components are stored in separate hash
tables. Each entry in one of the tables is given a unique number. A whole system
state is identified by a vector of numbers that refer to corresponding components
in the hash tables. This greatly reduces the storage needs for storing the set of
already explored states. The principle of collapse compression is illustrated in
Figure 3 (left).

Similar to the exposition in [30] we collapse the global store, the memory
pool objects, and the threads. These are combined to individual hash addresses
for a final encoding. As a hash function for the individual memory regions and
stack frames we take h(v1, . . . , vn) =

∑n
i=1 vi · |Σ|i modulo a prime q, where Σ is

9

set of computer characters (usually encoded in form of a byte). The final value
hash(x1, . . . , xk) as denoted in the pseudo-code (Figure 3 (right)) is in fact a
hash function on h1(x1), . . . , hk(xk).

One advantage of this construction is that the hash function can be computed
incrementally, based on the change in the state [25]. For example considering
the stack frames, components are added or removed only at the beginning and
the end, so that the resulting hash address can be computed incrementally in
constant time:

h(v1, . . . , vn, vn+1) ≡
n+1∑
i=1

vi · |Σ|i ≡ h(v1, . . . , vn) + vn+1 · |Σ|n+1 mod q

h(v1, . . . , vn−1) ≡
n−1∑
i=1

vi · |Σ|i ≡ h(v1, . . . , vn) − vn · |Σ|n mod q

For the memory pool, we use a balanced AVL [1] tree t with m inner nodes
We define a recursive hash function h′ for node N in t as follows: If N is a leaf
then h′(N) = 0. Otherwise, we set h′(N) to h′(Nl) + h(v(N)) · |Σ||Nl| + h′(Nr) ·
|Σ||Nl|+|v(N)| mod q. Here |N | denotes the accumulated length of the vectors in
a subtree with root N , and v(N) stands for the subvector associated to N , while
Nl, Nr denote the left and right subtrees of N respectively. If R is the root
of t, then h′(R) gives the same hash value as h applied to the concatenation
of all subvectors in order. For incrementally hash the memory pool, we require
logarithmic time.

External distributed state storage, external collapse compression for short,
refers to the setting that different entities of state vectors are stored individually
on disk. Stacks, memory regions, and individual storage units are maintained
in different files, all buffered in cache data structures. This may increase the
number of I/Os in case one state item is not contained in the cache but greatly
reduces external resources. The pseudo code for external collapse compression is
given in Figure 3 (right).

4.3 State Caching Strategies

Memory-limited search has a long tradition in Model Checking. For example,
state-space caching [12] stores the states in DFS creating a cache of visited states
until all main memory resources are exhausted. Many multiple redundant explo-
rations are due to different interleavings of partial orderings of transitions. They
have been tackled using different partial ordering methods such as ample [3],
persistent or sleep sets [8].

Different to earlier approaches to external exploration we require caching
strategies to retrieve/flush states into/from main memory. There are different
caching strategies. Some known ones are Last-In-First-Out (LIFO), First-In--
First-Out (FIFO), Least-Recently-Used (LRU), Least-Frequently-Used (LFU),
Flush-When-Full (FWF), etc. [37]. Different to the operating system we have

10

the advantage to adapt the caching strategy to the exploration algorithm. An-
other simple option is a two-dimensional cache as an array of fixed length l. The
elements of the array are buckets and each bucket can contain k elements. The
size of the cache is m = kl. Calculating the address for the entries is achieved by
a usual hash function. The strategy to delete a node when exceeding the depth
k we might consider is first-in first-out, such that the first inserted node in turn
is replaced. A read failure is given, if the value is not represented within the
stack anymore. It is easy to derive that the expected life time for an element is
m. Therefore, let p = 1/l be the probability, that a chosen element fits into a
bucket and q = (l − 1)/l be its dual probability. Then the random variable X
denoting the number of assignments up to the k-th success is negative binomial
distributed, such that P (X = r) =

(
r−1
k−1

)
pkqr−k for r ∈ {k, k+1, . . .}. Therefore,

E(X) = k/p = kl.

As the number of states to be expanded is also limited for AI search, different
strategies have been proposed. IDA* [18] invokes a series of cost-bounded DFS
searches, but shows exponential behavior in many state-space graphs. MREC [34]
is an algorithm, that exploits the entire memory for exploration and reassigns
space as needed, propagating cost values upwards. Node caching strategies like
SNC [27] introduce randomness to the storage of nodes. The overall probability
that a state is cached is 1− (1−p)t, where p ∈ [0, 1] is a fixed parameter and t is
the number of times that a state is revisited. For p = 0 the algorithm correlates
with IDA* and for p = 1 it matches MREC.

We implemented separate caches, one for the data section, one for the binary
section, one for the stack contents and one for the rest of the system state. All
of the components can be individually flushed to and read from disk. For the
data and binary section we incrementally check at construction time, whether a
change has occurred, for the stack we check for redundancies at insertion time. In
all three cases, the cache data structure is realized by using an AVL tree sorted
by the individual hash addresses. The forth cache is a simple FIFO structure. If
a state is generated, we first check by a hash comparison if it is new. If a hash
conflict is determined the state is retrieved from the cache (or, if not present,
from the hard disk). If the list exceeds a certain predefined value, all elements
that are not yet residing on disk are flushed. The last state element is deleted
making space for the next one to come.

For external storage we have decided to store system states in blocks of the
same size. Each block correspond an own file. The number of elements to be
stored should be adjusted that the file size is close to but does not exceed 2 GB,
a common file size limit on current computers. If one block gets exhausted, a
new file with a rising index file is created. Using number to index the files allows
to keep the information overhead in the mini-state at the acceptable level of one
integer value.

11

Philos. Explored States Path Length RAM Harddisk Time

Original Implementation

5 78,173 19 457MB - 369s

Collapse Compression

5 78,173 19 233MB - 346s

Externalization

6 642,982 22 195MB 568MB 90m
7 546,995 25 233MB 8,6GB 50h

Table 1. Exploration results for breadth-first search.

5 Experiments

We implemented external exploration on top of our tool StEAM [24]. StEAM is
an experimental model checker for concurrent C++ programs3.

We draw experiments on a Linux System with 1.7 GHz CPU, 512 MB RAM
and a IDE hard disk that was limited to 20 GB.

Our running case study are the Dining Philosophers problem that illustrate
the scalability of the approach. With p we denote the number of philosophers. We
compare different search methods, namely breadth-first, depth-first and best-first
search and different memory saving strategies: incremental state storage as in
original StEAM, collapse compression, and externalization. For secondary search
all information of a state except the stacks are externalized. The cache sizes are
fixed to 1,024 states.

First we consider breadth-first search. Our results are shown in 1. For the
original implementation and internal collapse compression we show the largest
instance that we could solve with respect to the available memory bound. The
result in external search show that with internal collapse compression alone
we cannot solve problems with more than 6 philosophers. For external search at
p = 8 we arrived at the limit of our hard disk capacity, while the internal memory
consumption suggest that we can scale higher. We observe that the step-optimal
counterexample lies at depth 4 + 3p, where p is the number of philosophers.

Depth-first search results are depicted in Table 2. The effect is that the ex-
ploration can solve by far larger instances. The unfortunate side-effect is that the
counterexamples becomes quite lengthy. With the original implementation and
internal collapse compression we approached to the limit of main memory with
20 and 25 philosophers, respectively. As we see, externalization allows to scale
the problem size to at least twice as many philosophers. As the counterexample
for p = 50 exceeds the length of ten thousands steps, we expect the burden for
3 The program model checker StEAM including the proposed externalization options is

available at http://sourceforge.net/projects/bugfinder in Linux packages (.deb
and .rpm). The web page also provides information on the tool from an developer
and application programmer point of view. Compared to the implementation as
provided by [24] the implmentation has been cleaned and documented with doxygen.
For detecting memory leaks valgrind proved to been the most valuable resource.

12

Philo. Explored States Path Len. RAM Harddisk Time

Original Implementation

20 48,998 3,898 426MB - 587s

Collapse Compression

25 76,954 5,123 405MB - 17m

Externalization

50 304,929 10,938 343MB 3GB 4h

Table 2. Exploration results for depth-first search.

Philos. Explored States Path Len. RAM Harddisk Time

Original Implementation

50 9,465 353 239MB - 10m

Collapse Compression

50 9,465 353 211MB - 10m
100 36,430 703 566MB - 160m

Externalization

150 80,895 1,053 256MB 2.3GB 14h
300 319,290 2,103 545MB 19GB 104h

Table 3. Exploration results for greedy best-first search using most-blocked heuristic.

the application programmer to trace the error to be too large and did not try
larger instances.

The results for greedy best-first search are shown in Table 3. As a heuristic
we chose the most-blocked heuristic that simply counts the number of process
that cannot execute a transition due to existing locks.

As expected, directed search accelerates the exploration enormously while
keeping the counterexample length at an acceptable level. With internal collapse
compression we slightly exceeded the limit of main memory with 100 philoso-
phers, at which the system started to swap.

Externalization allows to scale the problem size to 300 philosophers. We
also measured the number of hard disk accesses. This exploration last for more
than 4 days without exceeding the memory available. This indicates that our
implementation is almost free of memory leaks. The number of write accesses
is 319,291 and the number of read accesses is 7,280. Moreover, the number of
items in the stack cache equals 1,203.

In all the above mentioned experiments we used a single file to store all the
states. This policy turned out to work only for the domains where there was a
good distribution of the hash values and the range of the hash function was large
enough to result in few collisions. Such is the case with Dinning Philosophers.

While experimenting on a c++ program for solving 8-puzzle instances, we
observed that the single file based storage scheme resulted in an increase in time
due to large number of I/Os. The reason turned out to be small range of the
hash function that results in large number of collisions. Dividing the storage file

13

Instance Explored States Path Len. RAM Harddisk Time Hashcodes Collisions

Original Implementation

207165384 248,243 141 552MB - 3,933s 2,906 21,538,404
267105384 437,400 150 861MB - 6,933s 2,938 63,637,143
267150384 607,331 159 1125 - 8,961s 2,997 119,295,029

Collapse Compression

207165384 248,243 141 294MB - 3,798s 2,906 21,538,404
267105384 437,400 150 407MB - 6,776s 2,938 63,637,143
267150384 607,331 159 509MB - 9,490s 2,997 119,295,029
267154380 840,493 168 648MB - 13,310s 2,985 222,463,964
267154308 1,405,027 177 974MB - 21,713s 2,982 598,825,442

Sinlge File Externalization

207165384 248,243 141 173MB 64MB 4,503s 2,906 21,538,404
267105384 437,400 150 193MB 112MB 9,324s 2,938 63,637,143
267150384 607,331 159 212MB 156MB 14,574s 2,997 119,295,029
267154380 840,493 168 237MB 215MB 23,296s 2,985 222,463,964

Hash File Externalization

207165384 248,243 141 173MB 71MB 4,422s 2,906 21,538,404
267105384 437,400 150 197MB 123MB 8,553s 2,938 63,637,143
267150384 607,331 159 216MB 167MB 12,955s 2,997 119,295,029
267154380 840,493 168 237MB 228MB 18,479s 2,985 222,463,964

Table 4. Comparison of state storage strategies on 8-Puzzle instances.

according to the hash values solved our problem. For each hashcode that was
generated we assigned a new file, where states having that particular hashcode
are saved. While resolving a hash conflict we suggest to read the file block-
wise in a small internal memory cache. This resulted in an increase in time
performance as compare to the single-file based storage where the algorithm has
to perform several jumps in the file to resolve a conflict. In Table 4 we show a
comparison of different state storage strategies while solving 8-puzzle instances.
We compare the performance of this new storage scheme with the single-file based
implementation. A gain in time is clearly observable. This new scheme though
has to be dealt with care. For problems where the number of unique hashcodes
is very large, the I/O performance of the algorithm can infact decrease because
of accessing very small files. One should also take care that the number of files
could grow more than the allowable limit of the operating system.

6 Conclusion

Tailoring a model checking engine to an existing virtual machine for model check-
ing c++ is a challenging task, that was thought to be infeasible, e.g. by the
creators of JPF [38].

With this work we have provide the first implementation of an external pro-
gram model checker, which does not rely on abstract models. The main difference

14

to previous attempts in external model checking is that a skeleton of the search
tree resides in main memory.

The savings obtained by external exploration are considerable and likely
another important step towards practical applicability. Externalization positively
combines with directed exploration for accelerated error detection.

Despite considerably long CPU times induced by hard disk access for exter-
nal exploration in larger problem instances, the exploration efficiencies are still
remarkable. To the authors knowledge (and even when equipped with a consider-
ably small hardware resources of about 500 MB RAM and 20 GB hard disk), we
could present the largest explorations in program model checking that have been
achieved so far. Other program model checkers like VeriSoft are reported to solve
the philosophers problems (including state-less search and partial order reduc-
tion with persistent and sleep sets) with at most 10 philosophers [8]. Moreover,
even directed model checkers like HSF-SPIN that rely on an abstract model and
that do not take the burden of exploring the object-code [23] show considerable
work in solving larger philosophers problems as even the much simpler struc-
tured state vector appears considerably large. For externalizing HSF-SPIN [15],
2.29 GB were reported for p = 100 and 10.4 GB for p = 150 also using the
most-blocked/active-process heuristic.

The approach for analyzing c++ based on model checking the object code is
still experimental. While the tool and the virtual machine both compile on gcc
4.0, the compiler for the virtual machine still relies on gcc 2.95. For many input
file this is not a limitation as recent developments of the compiler are mostly
more restrictive on their inputs. However as the libraries are much different, we
plan to extend the virtual machine to work on cross-compiled code such that
our model checker can work on different processor models too.

We currently work on data and predicate abstraction [9] to be used in an
abstract-refinement loop [11] or for constructing abstraction databases [29]. As
abstractions convert a deterministic program into a non-deterministic one, we
aim to use our external model checker to explore the abstract models to guide
the search in the concrete program. Inspired by XSPIN, a GUI for SPIN model
checker, we have also started to develop a GUI for the model checking tool in form
of a plugin for Eclipse. So far the frontend can be used to select the parameters
of and call the model checker StEAM on the developed sources in the know c++
environment CDT. Moreover, we are able to display the counterexample trail
and exploration statistics of the model checker in an XML browser.

References

1. G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization of
information. Doklady Akademii Nauk SSSR, 146:263–266, 1962.

2. R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In DAC, pages 29–34, 2000.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.
4. S. Edelkamp. External symbolic heuristic search with pattern databases. In ICAPS,

pages 51–60, 2005.

15

5. S. Edelkamp and S. Jabbar. Large-scale directed LTL model checking. In SPIN,
2006.

6. S. Edelkamp, S. Jabbar, and S. Schrödl. External A*. In KI, pages 226–240, 2004.
7. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model check-

ing in the validation of communication protocols. STTT, 5(2-3):247–267, 2004.
8. P. Godefroid. Software model checking: The VeriSoft approach. Formal Methods

in System Design, 26(2):77–101, 2005.
9. S. Graf and H. Saidi. Construction of abstract state graphs of infinite systems with

PVS. In CAV, pages 72–83, 1997.
10. A. Groce and W. Visser. Model checking Java programs using structural heuristics.

In ISSTA, pages 12–21, 2002.
11. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with

BLAST. In SPIN, pages 235–239, 2003.
12. G. Holzmann. Tracing protocols. AT& T Technical Journal, 64(12):2413–2434,

1985.
13. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, 2004.
14. G. J. Holzmann. State compression in spin. In Third Spin Workshop, Twente

University, The Netherlands, 1997.
15. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In VMCAI,

pages 313–329, 2005.
16. S. Jabbar and S. Edelkamp. Parallel external directed model checking with linear

I/O. In VMCAI, 2006.
17. C. Jard and Th. Jeron. Bounded-memory algorithms for verification on-the-fly. In

CAV, 1991.
18. R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27(1):97–109, 1985.
19. R. E. Korf. Breadth-first frontier search with delayed duplicate detection. In

IJCAI-workshop: Model Checking and Artificial Intelligence (MoChArt), pages 87–
92, 2003.

20. R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In AAAI,
pages 1380–1386, 2005.

21. L. M. Kristensen and T. Mailund. Path finding with the sweep-line method using
external storage. In ICFEM, pages 319–337, 2003.

22. F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
In SPIN, pages 80–102.

23. A. Lluch-Lafuente. Heuristic Search in the verification of Communication Proto-
cols. PhD thesis, Computer Science Institute, Freiburg University, 2003.

24. T. Mehler. Challenges and Applications of Assembly-Level Software Model Check-
ing. PhD thesis, University of Dortmund, 2006.

25. T. Mehler and S. Edelkamp. Dynamic incremental hashing in program model
checking. ENTCS, 2005.

26. E. Mercer and M. Jones. Model checking machine code with the GNU debugger.
In SPIN, pages 251–265, 2005.

27. T. Minura and T. Ishida. Stochastical node caching for memory-bounded search.
In National Conference on Artificial Intelligence (AAAI), pages 450–456, 1998.

28. J. Pearl. Heuristics. Addison-Wesley, 1985.
29. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction

and symbolic pattern databases. In TACAS, pages 497–511, 2004.
30. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model

checking dynamic software. ENTCS, 89(3), 2003.

16

31. P. Sanders, U. Meyer, and J. F. Sibeyn. Algorithms for Memory Hierarchies.
Springer, 2002.

32. A. Santone. Heuristic search + local model checking in selective mu-calculus. IEEE
Transactions on Software Engineering, 29(6):510–523, 2003.

33. V. Schuppan and A. Biere. From distribution memory cycle detection to parallel
model checking. STTT, 5(2–3):185–204, 2004.

34. A. K. Sen and A. Bagchi. Fast recursive formulations for best-first search that
allow controlled use of memory. In IJCAI, pages 297–302, 1989.

35. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 1992.

36. U. Stern and D. Dill. Using magnetic disk instead of main memory in the murphi
verifier. In CAV, pages 172–183, 1998.

37. A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.
38. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In

ICSE, pages 3–12, 2000.

17

7 Appendix: c++-Sources Dining Philosophers

Philosopher.h

#ifndef PHILOSOPHER
#define PHILOSOPHER

#include "IVMThread.h"

class Philosopher : public IVMThread {

private:
static int id_counter;
short * leftfork;
short * rightfork;

public:
Philosopher();
Philosopher(short * leftfork, short * rightfork);
virtual void start();
virtual void run();
virtual void die();

};
#endif

Philosopher.cc

#include "icvm_verify.h"
#include "IVMThread.h"
#include "Philosopher.h"

class IVMThread;
extern int g[10];

Philosopher::Philosopher(short * lf, short * rf) :
IVMThread::IVMThread() {

leftfork=lf; rightfork=rf;
}

Philosopher::Philosopher() {}

void Philosopher::start() {
run();

}

void Philosopher::run() {
int i;

18

while(1) {
VLOCK(leftfork);
VLOCK(rightfork);
VUNLOCK(rightfork);
VUNLOCK(leftfork);

}
}

void Philosopher::die() {}
int Philosopher::id_counter;

philosophers.c

#include <stdlib.h>
#include <assert.h>
#include "Philosopher.h"

class Philosopher;

Philosopher ** p;
short forks[255];

void initThreads (int n) {
p=(Philosopher **) malloc(n*sizeof(Philosopher *));
for(int i=0;i<n;i++) {
p[i]=new Philosopher(&forks[i], &forks[(i+1) % n]);
p[i]->start();

}
}

int main(int argc, char ** argv)
{
int n;
BEGINATOMIC;
if(argc<2) {
fprintf(stdout, "---=====Missing Parameter!=====---\n");
exit(0);

}
n=atoi(argv[1]);
initThreads(n);
ENDATOMIC;
return 1;

}

19

���������
	��
��������������	������
����� �!�#"%$&	��(')�*�+��,-�+./���
�0�
�21��3���
� 45���
'6�����
'6��798;: <9	���=>��?@�)AB�C�D,E�E�F�

GIHKJMLONQPSR
TCUVLOR-WXNZY�[\TX]F^�J_PSHX[_L*`�J\POa
b
c+d@egfih�jlk�m�nporq
kQs\tuhOvwhyxzkSs+eg{_|}n
vw~pq��wxz�K�_��{5xz�!hOvw��x����q-��d@q
~�tM�Mvw�d@q
~�tM�Mvw�_�r�@hSvw~pq
{����M�E�
�E�E�

�\���
�_�
�\�������
���r�
�\�Z�> ¢¡!�_�E£-¤_�y�\�!¡��!¥� g¦!�§¨d@egfih�jlk�m�nporq
kQs\tuhOvwhyxzkSs+eg{_|}n
vw~pq��wxz�K�_��{5xz�!hOvw��x����q-��d@q
~�tM�Mvw�d@q
~�tM�Mvw�_�r�@hSvw~pq
{����M�E�
�E�E�
¤_�
�!©!�\�����\�-���r�
�_�y�> ¢¡!�M�
£-¤_�y�_�E¡��!¥� ª¦!�

«p¬®­y¯y°�±r²
¯E³ fDsMx´�3µrq-µuhOv3µMvwhy��hO{\�w�3q-{VnE�_�w¶´xz{Mh�n-|u�ws5h��MµukynE~&xz{5�@µMvwnZ·�hykO�>¸�hZ¹_º» hyhy¼ »u½ fDsMx´��µ_vwn�·¾hykO��q
xz~&�3q-�3kOvwhZq��wx´{M��q@��nEµMs5xz�¾�wxzkZq-�why¹�|¿vQq
~&hSÀDn
vw��|}n-v�vwhy�5��h{Mn
�Dn
{5¶��Vn-|XµMvwhy�\xznE�M��¶z��kOvwhZq��whZ¹&��n
|¿�ªÀ�q�vwh@�¾�_�¾�why~&�>q
�DqIÀ�sMnE¶zhE�\t5�_�>q
¶z��n�kOnE{Mº��x´¹MhSvwx´{M���ws5hOxzvDµrq-v��w�y�_xz{5kO¶´�5¹Mxz{5�
�ws5h�µMvwnEtM¶zhy~%Á}vwhZÂ��5x�vwhy~&hO{\�w�SÃ�q
�DÀ�hy¶z¶iq-�D�ws5h��n
¶´�_�wxznE{ÄÁÅq�vwkSsMx��whykO�w�Mvwh
�i¹_hy��xz�E{Cq
{5¹�kyn\¹_h-Ã@ÆÇ�¾�Qq
{5¹5q-vQ¹¨À�qy�2n-|�|}n-vw~pq
¶zxzÈyxz{5��\{5nZÀ�¶zhZ¹_�Eh�q
tun
�M� kynE~&µM¶zhO�wh¨��n
|É�gÀ�q�vwh2kZq
��hy� À�xz¶´¶�tuh2¹Mhy�Ehy¶znEµuhZ¹ ½DÊ vwhy�\xznE�5�kZq-��hy��kyq
{ptuh�vwhO��vwxzhy�!hZ¹�t5q
��hZ¹Vn
{pq*��x´~&xz¶´q-vwx��ª�V~&hZq-���Mvwh�q
{5¹�vwhy�5��hy¹�|}n
v���xz~&xzº¶´q-v�{MhOÀË��n
|É�gÀ�q�vwh
¹Mhy�!hO¶´n
µ5~&hy{�� ½ ¸�hZÂ��5x�vwhy~&hO{\�w�>hy{5�
xz{5hyhOvwxz{M�M�_vwhy�5�wq-t5¶zh�q
����hO�¶zxztMvQq�vwx´hO�y��~&n\¹Mhy¶���vQq
{M�¾|}n-vw~pq-�wxznE{X�D�\{5nZÀ�¶zhZ¹M�
hOº¢trq-��hZ¹lÂ��5hOv��_xz{5�_���\{Mn�À�¶zhZ¹_�Eh
vwhyµ_vwhy��hy{��Qq-�wxzn
{2q
{r¹+kZq
��hOº¢t5q
��hZ¹0vwhZq-��nE{5xz{M�VÀ�x´¶z¶#tuh�kyn
s5hOvwhO{\�w¶��+kynE~�t5xz{5hy¹ �wnhy{5q
tM¶´hI�wsMhIvwhZÂ��5x�vwhy~&hy{��w�¾ºª¹_vwxz�!hO{ ��n-|¿�ªÀ�q-vwh
¹_hy�!hy¶znEµM~&hy{�� ½

Ì ÍMÎ�ÏrÐXÑ*Ò
Ó�ÔiÏuÕwÑ�Î
Ö�T×POHKØÙN0ÚX[\ÚiR-L¨Û@RFØ¿T5POLSJu]uÜXÝ-R�POHKR�Þ�ß�àªáÅÜKT�]uR
]âÚKLOJ\ãwREÝZPCä�åyæVç®åyåOæ&çâè¾ä�åyé�êuëÙìOå�í¨å�îiïÅðZñ
ò ìZëÙó�å�îÄç#ôQõZï¢ö�÷\ìSåpæ+å�ó�å�ø¿ôOùií¨å-î�ï@ç�ú!ð�ï¾å�í&ûyü®GIHKØÙN*ÚKLOJ\ãwREÝZP�Ý-J_ý�WKØ}TKR
N*NSJ_ý¨RVÛ@R-þ}þ¿àgÿrTKJ�Û*T
[\ÚKÚKLOJM[MÝyHKR
NCáÅLOJ_ý NQJ_áÙPwÛ@[_LSRlR-T � Ø}TKR-R
LSØ}T � [\TX] [_LQPOØ��iÝ�ØÙ[\þVØ}T5PSR-þ}þ}Ø � R
TXÝ�R�POJ [_ÝyHKØ}R��_Rl[áÅLO[_ý¨R-Û@J_LOÿ áÅJML@LOR-Ü�NQR-àgWX[MNQRE]�NSJ\áÙPwÛI[\LOR�]uR��_R
þ¿JMÚKý¨R-T5P
ü���LOR��rØ}J_Ü�N�]uR��_R-þ}JMÚKý¨R-T5P�J_á�NSJ\áÙPQà
Û@[_LSR2N
	uNwPOR-ý2NVØÙNpNQPSJ_LOR
]ÄØ}T��y÷!ð-åZð&[\T�] Ý-[\T WiR2LOR�POLSØ}R��MR
] WX[_NSR
]ÄJMTË[FLSR�
MÜXØ¿LOR-ý¨R
T5PON
NQÚiR
Ý-Ø��iÝ-[�POØ}J_T®ürGIHKRVÚKLSR��rØ¿JMÜXN@N�	uNQPSR-ý Ý
[\TCPSHKR
TCWiR&[_]K[_ÚuPSRE]¨POJ0Ý
[_NSR�à�NQÚiR
Ý-Ø���Ý*LOR�
5ÜKØ}LSR-à
ý¨R-T5PONIÛ*Ø¿PSH HKR
þ¿Ú J\á�ý¨Ju]uR-þ¿à�]uLSØ��MR-T2]uR��_R-þ}JMÚKý¨R-T5P-ü
GIHKR��*R����uR-R�����ÚKLSJ_ãwR
Ý�P@[\Ø}ý2N�[\PIÝ-LSRE[�POØ¿T � [+NSJ_ÚKHXØ}NQPSØÙÝ
[�PSRE]+áÅLO[_ý¨R-Û@J_LOÿpáÅJ_L@LOR-ÜXNSRTKJ\P
JMTKþ�	�J_á�ÚKLSR��rØ¿JMÜXN*NSJ\áÙPwÛI[\LORVN
	uNwPOR-ý2N*WXÜuP�[_þ}NSJ¨Ý�JMTXNQØÙ]uR
LSØ}T � LOR�
5ÜKØ}LSR
ý¨R-T5PON��K[\LyÝyHKØ¿àPSR
Ý�PSÜKLOR���]KR
NSØ � T [_TX] Ý�Ju]uR\ü��
þ}þIPSHKØÙN�Ø}TuáÅJ_LOý2[�POØ¿JMT Û*Ø}þ¿þIWiR/NwPOJ_LOR
] Ý�J_T5Py[\Ø}TKØ}T � WiJ\POHý¨R�PO[l]K[\PO[l[\T�]×POHKR/]uR��_R-þ}JMÚKý¨R-T5P�NSJ_þ}ÜuPOØ}J_T×Ø¿PyNQR
þÉá��lPOJ � R�PSHXR-L0áÅJ_LOý¨Ø}T � [NSJ\áÙPwÛI[\LOR

�O÷�ð-åZüDGIHKØÙN&ý¨R
[_TXN�PSHX[\P+NSJ\áÙPwÛI[\LOR�Ý
[_NSR
NpÝ
[\TlW�R�Ø}]KR-T5PSØ��XRE] [_TX]ÄLSR-PSLOØ¿R��_RE]/WX[MNQRE] JMT
[\þ}þ>Ø}TuáÅJMLSý2[\PSØ}J_TCPSH�[�P&ØÙN�Ý-J_T5PO[_Ø¿TXR
]FÛ*Ø¿PSHKØ}T�POHKØÙN�ý¨R�PO[C]K[�Py[��#TKJ\PVJ_TXþ�	FWX[MNQRE]/JMT/PSHXR
ÚKLSR��rØ¿JMÜXNINQJMþ}ÜuPSØ}J_T�ü
GIHKR�LOR-ý2[\Ø}TX]KR-LiJ\árPSHKØÙN3ÚX[\ÚiR-L�ØÙN®JML � [\TKØ}a
R
]
[MN#áÅJ_þ}þ}J�Û�N��yØ}T �rREÝZPOØ¿JMT�!*Û�R�JMÜuPSþ}Ø}TKR�PSHXRÚKLSJMWKþ}R-ý2N�Ý�ÜKLOLOR-T5P&LSR
ÜXNQR-àgW�[_NSR
]ÄNQJ_áÙPwÛ@[_LSR0]uR��MR-þ}J_ÚXý¨R-T5P�NQPSLOÜ �"� þ}R
N�Û*Ø¿PSHÄØ¿TlÚKLy[_Ý�PSØÙÝ�R_ü

�*áÙPSR
L�PSH�[�P�Û@RI]KR�PO[_Ø}þ5HXJ�ÛËPSHXR
NSR@ÚXLSJMWKþ}R-ý2N�Ý-[\T�WiRIPO[_Ýyÿrþ}R
] Ø}T#�rREÝZPOØ¿JMT%$V[\T�]+]uRENSÝ-LSØ}WiR
PSHKRVÜKTX]KR-LOþ�	rØ}T � áÅJMLSý2[_þ}Ø}NSý2N-ü"&>Ø}TX[_þ}þ�	"�MÛ@R � Ø��_R�[�NSÜKý¨ý2[\L'	�[_TX] Ý�J_T�Ý�þ}ÜX]uR
PSHKØÙN@ÚX[\ÚiR-LØ¿T(�rREÝZPSØ}JMT*)Kü

20

� fDsMn
vw�¾�why{,+IvwhOt5��q
{5¹.-Xn
�wsrq�v�d@n
�wÈ
/ 0214365/Ð�Ñ87�9:3<;
Ö¾P ØÙNp[/Ý�JMý¨ý¨J_T PSLOR-TX]ÄPOHX[�P0NQJ_áÙPwÛ@[_LSR¨N
	rNQPSR
ý2NVW�REÝ�JMý¨R¨ý¨J_LOR0[_TX]lý¨J_LOR¨Ý�JMý¨ÚKþ}R>=#ü
GIHKØÙN�ØÙNV]uÜKR�POJ Ø}TXÝ-LSRE[_NSØ}T � Ý�Ü�NwPOJ_ý¨R-LVLOR�
5ÜKØ}LOR-ý¨R-T5PyN
[\T�] [_]?�![_TXÝ�Ø}T � ÚiJMNONQØ}WKØ}þ}Ø¿PSØ}R
NIØ}TÜXNQØ}T � PSREÝyHKTKØÙÝ-[_þ#[_TX]2R
þ}R
ÝZPOLSJMTKØÙÝ�N
	rNQPSR
ýFü?@
áDÝ�JMÜKLONSR�POHKR-LORVØÙN�[_T�Ø}T5PSR-Ly[_Ý�PSØ}J_T¨WiR�PwÛ@R-R
TPSHKRENQR�PwÛ@J+ØÙNONQÜKREN>�uÝ�Ü�NwPOJ_ý¨R-LyN�]KR-ý2[\T�]2ý¨J_LOR�áÅÜXTXÝZPOØ¿JMTX[\þ}Ø¿P:	0[_N�PSREÝyHKTKØÙÝ-[_þ�ÚiJMNONQØ}WKØ}þ}Ø¿PSØ}R
N
[_]���[\T�Ý�R��u[\T�],�rØ}Ý-R��_R
LONO[VPOR
ÝyHKTKØÙÝ
[\þ�[M]���[\TXÝ-R-ý¨R
TMPyN�[_LSR
]KLSØ��_R
T¨WA	0Ý-ÜXNQPSJ_ý¨R
L�LOR�
5ÜKØ}LSR-à
ý¨R-T5PON-ü�B�JMý¨ÚX[\TKØ}RENDØ¿TA�MR
NQP�H5Ü � R
[_ý¨J_ÜKT5PON�Ø¿TC]uR��MR-þ}J_ÚKý¨R
T5PDJ_á�TKR-ÛÇNSJ\áÙPwÛI[\LOR�N�	uNQPSR
ý2NØ¿T J_Ly]uR
L�POJ2NwPy[C	2Ý�JMý¨Ú�R-PSØ¿PSØ��_R_ü
�*R-ÜXNSRpHX[MN*þ}J_T � WiR-R
T�ØÙ]uR-T5PSØ��XRE]F[_N�[¨ÿMR�	CØ¿T�R
TKHX[_TXÝ�Ø}T � NSJ\áÙPwÛI[\LORp]uR��MR-þ}J_ÚKý¨R
T5P-ü

D�ÜKP�]uÜKRpPSJ¨POHKR+Ý-J_ý¨ÚKþ}R>=uØ¿P:	¨[\TX] [\ý¨J_ÜXTMP*J_á�NSJ\áÙPwÛI[\LORpN
	rNQPSR
ý2N*ÚKLOJu]uÜXÝ�RE]E�iNSJ\áÙPwÛI[\LOR
]uR��MR-þ}J_ÚKý¨R
T5P3ÚKLOJ\ãwR
Ý�PON3PSR
TX]pPOJVØ � TKJ_LOR�ÚKLOR��rØ}J_Ü�N3NSJ\áÙPwÛI[\LOR�Ý-[MNQREN�ü\GIHKR
LSRI[\LOR�[�TrÜKý�W�R
LJ\áKLOR
[_NSJ_T�N®áÅJ_L3PSHKØÙN>ÚKHKR
TKJ_ý¨R
TKJ_TF�![_N3áÅJ_L�R>=K[\ý¨ÚXþ¿R�POHX[�P�]uØ�GiR
LSR
T5P3Ú�R
LONSJ_T�N3Û@J_LOÿ�JMT&PSHXR
]uØ�GiR
LSR
TMPDÚKLOJ\ãwREÝZPON�[\T�]]uJVTKJ_PDNSHX[\LOR@ÿ5TXJ�Û*þ¿RE] � R�[\WiJ_ÜuP�PSHKR*Ý
[_NSR
N��EÚKLOR��rØ}J_Ü�N>NSJ_þ}ÜuPOØ¿JMTXN[\LORIáÅJ_L � J\PSPSR
T�[_W�JMÜuP�Ø}T0þ¿JMT �]uR��MR-þ}J_ÚXý¨R-T5PDÝ�	uÝ�þ}R
N��_[\TX]�ý¨J5NwP�TKJ_PO[_WKþ�	&PSHX[\P�Ø¿P�ØÙN�HX[\Ly]PSJ�Ø}]KR-T5PSØ¿áH	+PSHKR&NSØ¿ý¨Ø}þÙ[\LOØ¿P:	VJ\á>[ÚKLSR��rØ¿JMÜXN�Ý
[_NSRI�¨Øgü R_ü5Ø¿PON�LOR�
5ÜKØ}LSR
ý¨R-T5PON�[\TX]CNQJMþ¿ÜKPSØ}J_TXN-ü
GIHKR2ý2[\Ø}TlØÙNSNSÜKR0POJ NQJMþ��_R0PSHXØ}NpÚKLSJMWKþ}R-ý)ØÙNp]uR��MR-þ}J_ÚXØ¿T � [NwPy[\TX]K[_LO]ÄÛI[C	 J_á*áÅJ_LSàý2[\þ}Ø}a-Ø}T � ÿrTKJ�Û*þ}R
] � RC[_W�JMÜuP�Ý�JMý¨ÚKþ}R�POR NSJ\áÙPwÛI[\LOR Ý
[_NSR
N-ü���LOR
Ý-Ø}NSR-þ�	"�D[NSJ\áÙPwÛI[\LOR Ý
[_NSRÝ�J_T�NQØÙNQPON@J\á�[0LSR�
5ÜKØ}LSR
ý¨R-T5PON�ý¨Ju]uR-þJ�K[\T�[\LyÝyHKØ¿PSREÝZPOÜKLO[_þ#ý¨Jr]KR-þJ�K[�]KR�PO[_Ø}þ¿RE]C]KR
NSØ � TC[_TX]Ý�Ju]uR\üXGIHXR�LOR�
5ÜKØ}LOR-ý¨R
TMPyN�ý¨Ju]uR
þiLOR-ÚXLSRENQR
TMPyN�PSHKRVÚKLOJ_WKþ}R
ý èÅJ_L�ù#ìSô"K-øÉå-í ðgùX÷"�yåOûL�XÛ*HKØ}þ}R

PSHKR�[_LOÝyHXØÉPOR
Ý�PSÜKLy[\þDý¨Ju]uR-þJ�3]uR-PO[_Ø¿þ}RE]]uRENQØ � TÄ[_TX] Ý�Ju]uR0POJ � R-PSHKR
LpLOR-ÚKLOR
NSR-T5P&PSHXR�NQJMþ}ÜuàPSØ}J_TlèÅJML&ð-ô�øzêKïªë¢ô�î ðgùK÷M�OåOûyü#GIHKØÙNIÿrTKJ�Û*þ}R
] � R�ý�ÜXNQP�W�RpÝ
[\ÚuPOÜKLSRE]F[\TX]FNQPSJ_LOR
]CáÅJML*R��_R
L
	NQJ_áÙPwÛ@[_LSR/N
	uNwPOR-ý Ø}TÇJ_Ly]uR-L�PSJËWiR LOR�POLSØ}R��![_WKþ}R áÅJ_L�þÙ[\PSR-LC]uR��MR-þ}J_ÚKý¨R
T5P-ü�UVTKJ�Û*þ}RE] � RÛ*ØÉPOHKØ}T×LOR�
5ÜKØ}LOR-ý¨R-T5PyN+NSÚ�REÝ�Ø���Ý
[�PSØ}JMTXN>��]uRENQØ � Tâ]uJuÝ�ÜKý¨R
T5PON¨[\T�] Ý-Jr]KR ØÙN0ÜXNSÜX[_þ¿þ�	lTKJ_PÛ�R
þ¿þ¿à�NwPOLSÜ�ÝZPSÜXLSRE]E��HKJ�Û�R��_R
L-üMGIHXØ}N�á¢[_ÝZP�HX[\ý¨ÚiR-LyNDPSHXR�[\WXØ¿þ}Ø¿P:	VPSJ+[\ÜuPOJ_ý2[�POØÙÝ-[\þ}þ�	�ÚKLSJuÝ-R
NON
PSHKR&ÿrTKJ�Û*þ}R
] � R�[_TX] ØÙ]uR-T5PSØ¿áH	2[_ÚKÚKLOJ_ÚKLOØÙ[�PSR
áÅJ_LOý¨R-LIÝ-[MNQREN�üGIH5Ü�N>�DR>G#R
Ý�PSØ��_R2ý¨REÝyHX[\TXØ}NSý2N&[\LOR2TKR
R
]uRE] POJ/áÅJ_LOý2[\þ}Ø}a-R0ÿrTKJ�Û*þ}R
] � R2[\WiJ_ÜKP�NSJ\áÙPQàÛ@[_LSR�Ý-[_NSR
N��A�XTX]uØ}T � NSØ¿ý¨Ø}þÙ[\LOØ¿PSØ¿R
N�WiR�PwÛ@R-R-TCLSR�
5ÜKØ}LSR
ý¨R-T5PON�NQÚiR
Ý-Ø��iÝ-[�POØ}J_TXN�[\TX]C]uØÙNQÚKþÙ[C	5àØ¿T � NSØ}ý¨Ø¿þÙ[_LSØ¿PSØ¿R
NI[MN�Û@R-þ}þ�[_NV]uØ�G#R-LOR-TXÝ-R
N�WiR�PwÛ@R-R-TlNSJ\áÙPwÛI[\LOR+Ý-[MNQREN�ü<�rØ}ý¨Ø}þÙ[\LOØ¿P:	2Ý-[\TÄWiRý¨R
[_NSÜKLOR
]lWA	 Ý�JMý¨ÚX[\LOØ}T � PSHKR LSR�
5ÜKØ}LSR
ý¨R-T5PON&ý¨Ju]uR
þÙN&J\á�[Ý�ÜKLOLOR-T5P�[_TX]Ë[/ÚXLSR��5Ø}JMÜXNÝ-[_NSR\ürGIHKR
LOR�POLSØ}R��_R
]0Ý
[_NSR�ØÙN�PSHXR-T2Ø}T5PSR
TX]uR
]¨PSJ WiR
LOR-Ü�NQRE]0W�	0ý¨Ju]uØ¿áH	rØ}T � PSHKJ5NQR�ÚKþÙ[_Ý�RENPSHX[\P�TKR-RE]âLSR
Û�JMLSÿ è¢Øgü R_ü�PSHKR�ÚXþ}[MÝ�REN0Ø¿T�]uØÙÝ-[�POR
] WA]uØ�G#R-LOR-TXÝ-R
Nyû+[_TX] ÿ_R
R-ÚKØ}T � PSHXJMNSRÚKþÙ[_Ý�REN�PSHX[\P�Ý
[\TlW�RCLSR
ÜXNSR
]ÄÛ*Ø¿PSHKJMÜuP ý¨Ju]uØ���Ý-[\PSØ}J_TâèÅØgü R\ü�POHKJMNSR2ÚKþÙ[_Ý-R
NVØ}TX]uØÙÝ
[�PSRE] WA	
NQØ}ý¨Ø}þÙ[\LOØÉPOØ}R-NOûZü
�*áÙPSR
L@]KR�PO[_Ø}þ¿Ø}T � POHKR�ÚXLSJMWKþ}R-ý2N�Ý�ÜXLSLOR-T5P�ÚKLy[_Ý�PSØÙÝ�R�NwPOLSÜ �M� þ}R
NDÛ*Ø¿POHF�5Ø}T¨POHKR�áÅJMþ}þ¿J�Û*Ø}T �NQREÝZPSØ}JMT�Û@R�ÚKLOR
NSR-T5P�[�XLONQP � þÙ[\T�Ý�R�[\PIPSHKR&ÜKT�]uR-LOþ�	5Ø}T � áÅJ_LOý2[\þ}ØÙNQý2N�POHX[�P
[_LSR�Ø}TMPOR-TX]KR
]PSJ¨WiR&ÜXNQRE]2áÅJML�NQJMþ��5Ø}T � PSHKR&WiR�áÅJMLSRVý¨R
TMPOØ}J_TKRE]2ÚKLOJ_WKþ}R
ý2N�ü

N 02143PO@Ñ�9wÓ�ÏuÕwÑ�ÎRQTS0Õ�ÐVUMÏâÍMÒ�3<WXU
GIHKR&Ø}TMPOR-TX]KR
]�áÅLO[_ý¨R-Û@J_LOÿ�Ý-J_TXNSØÙNwPyN�J_á>POHKLOR-RVR-þ}R-ý¨R
T5PON��
Y�Z?[]\V^]Z?\`_�� þÙ[\T � ÜX[� R�ØÙN@TKR-RE]uR
]�PSJ0ÚKLOR
Ý-Ø}NSR-þ�	0LOR-ÚKLOR
NSR-T5PILSR
ÜXNS[_WKþ}R�NSJ\áÙPwÛI[\LOR�Ý
[_NSR
N-üGIHKR-LOR�áÅJMLSR"�
POHKØÙN3þÙ[_T � ÜX[� R�TXR-R
]XN3POJ�Ý-Ja�_R-L�LOR�
5ÜKØ}LSR
ý¨R-T5PON®NSÚiR
Ý�Ø���Ý
[�POØ¿JMTF�
ý¨Ju]uR
þ}Ø¿T � �ý2[\ÚKÚXØ¿T � [\T�]�POLO[_TXNQáÅJ_LOý2[�PSØ}JMTF�5[_TX]CNSJ\áÙPwÛI[\LORVÝ-[_NSRb
5ÜKR-L'	rØ¿T � ü

21

¸�hy¼ » hyhy¼ » c

d�[]\Vef[g_ GIHKR
R-T � Ø¿TXR*ý2[\ÿ_REN�ÜXNQR
J\á#PSHKR
TKR-Û þÙ[\T � ÜX[� R@[_TX]0LOR
[\þ}Ø}a-REN�POHKR�LOR-ÜXNSR*ý¨R
ÝyHKà[\TKØÙNSý WA	�R-T�[\WKþ}Ø}T � ØÙ]uR
T5PSØ���Ý-[\PSØ}J_T2[_TX] LSR-PSLOØ}R���[\þiJ\áDÚKLOR��rØ}J_ÜXN@NQJ_áÙPwÛ@[_LSRVÝ-[MNQREN�ü
hi_�j�k]lnmgl`opl`\Vq GIHKR¨ý¨R�POHKJu]uJ_þ}J � 	�]uR
NOÝ�LOØ}W�REN�PSHKR�Ý-J_ý¨ÚKþ}R-PSR�þ¿Ø¿áÅR¨Ý>	uÝ-þ¿R0J_á*NSJ\áÙPwÛI[\LORÝ-[MNQREN®Û*HKØÙÝyH�ØÙN®]uR��XTKRE]VW�	�Ý-[_ÚuPSÜKLOØ}T � [\TX]�LOR�POLSØ}R��rØ}T � Ý-[_NSR
N-ü
GIHKR�Ý
[_NSR
N#POHKR-ý2NSR-þ��MR
N[\LOR¨]uR>�XTXR
]ÄÛ*Ø¿PSH PSHKR¨TKR
Û þÙ[_T � ÜX[� R"�#[_TX]lNwPOJ_Ly[� R0[\T�] LOR�POLSØ}R���[_þ�ØÙN�ÚiR-LSáÅJ_LOý¨R
]Û*Ø¿PSHCPSHKR&TKR
Û R
T � Ø}TKR_ü
Ö�T J_Ly]uR
L�PSJ�Ø}ý¨ÚKþ}R-ý¨R
TMP3[_T R�GiREÝZPSØ��MR�NSJ\áÙPwÛI[\LOR�]uR��MR-þ}J_ÚXý¨R-T5P3N�	uNQPSR
ý PSHX[\P�[MÝyHKØ}R��MR
N

NQÜXÝyH J_WKãwR
ÝZPOØ��_R
N��u]uØ�GiR
LSR
TMP*[\LOR
[MN�J_á�NSJ\áÙPwÛI[\LOR
R
T � Ø}TKR
R-LOØ¿T � [\TX]C[\LSPSØ���Ý-Ø}[_þXØ}T5PSR
þ¿þ}Ø � R
TXÝ�RTKR-RE]/POJ WiR2Ý�JMý+WXØ¿TXR
]#üFDI[_NSØ}Ý+[\ÚKÚXLSJ5[_ÝyHKREN�[_LSR�LSR�
5ÜKØ}LSR
ý¨R-T5PON
R-T � Ø¿TXR-R-LOØ}T � �iLSR
ÜXNO[\WKþ}R[_NONQR-PDþ}Ø}WKLy[\LOØ}R
N�è¢R\ü � üMNSJ\áÙPwÛI[\LOR�ÚXLSJu]uÜXÝ�P�þ}Ø¿TXR
NyûL� � Ly[\ÚKHXØ}Ý
[\þr[_NDÛ@R-þ}þu[_N�POR>=rPSÜX[_þKý¨Ju]uR-þ}Ø}T �[\ÚKÚKLOJM[MÝyHKR
N��rý¨Jr]KR-þ¿à¾]KLSØ��_R
T2]uR��MR-þ}J_ÚXý¨R-T5P@[_TX]FÝ-[_NSR�à¾WX[MNQRE]¨LSRE[_NSJ_TKØ}T � üGIHKRpTKR�=5P�NQREÝZPSØ}JMTXN�]uRENSÝ-LSØ}WiRp[\ÚKÚKLOJM[MÝyHKR
N@POHKR LOR�
5ÜKØ}LOR-ý¨R
TMPyNwà�]uLOØ��_R-T2NSJ\áÙPwÛI[\LOR&]uR�à
�_R-þ}JMÚKý¨R-T5P&N�	uNQPSR-ý ØÙNVWX[_NSR
]ÄJ_TÄáÅLOJ_ý PSHKRr�rØ}R-Û Ú�JMØ}TMPpJ_á@ÿrTKJ�Û*þ}RE] � R-àgWX[MNQRE]/Ý�JMT�� � àÜKLO[\PSØ}J_T [\T�] LSR
ÚKLSRENQR
T5PO[�POØ}J_T®üs&KÜXLQPOHKR-LOý¨J_LORFØÉPCØ}N¨]KR
NOÝ�LOØ¿WiR
]âHKJ�Û PSHXØ}NCN�	uNQPSR
ý(Ý-[_T
W�R
TKR>�KP
áÅLSJMý [¨Ý�JMý+WXØ¿T�[�PSØ}JMT¨J\á�PSHKJ5NQR"�XLSRENQÚiR
Ý�PSØ��_R
þ�	\üuGIH5Ü�N>�XÛ@Rt
5ÜKR
NQPSØ}JMTvu_Û*HX[�P�Ý-[_T
ÿ5TXJ�Û*þ¿RE] � R-àgW�[_NSR
] Ý-J_T�� � ÜKLy[�POØ¿JMT+[_TX]�LSR
ÚKLSRENQR
T5PO[�POØ}J_T ÚXLSJa�rØÙ]uR@áÅJ_L�POHKR�Ø}TX]uØÙÝ
[�PSRE]pPOJ_ÚuàØ}Ý
N'w�uKü
xFyJz { _�|F^]eH}a_A~�_A[Ej��%d�[]\`ep[]_�_�}aep[]\
&KJ_L]uR
NOÝ�LOØ}WKØ}T � LSR�
5ÜKØ}LSR
ý¨R-T5PON0J_á&[NQJ_áÙPwÛ@[_LSR/N
	uNwPOR-ý���LOR
NQPSLOØÙÝZPOØ¿JMTXN0J_T POHKR N
	uNwPOR-ýJ_L&Ø¿PONVÚX[_LQPyN&[\TX] áÅR
[\PSÜKLOR
NVJ_á�POHKR2N
	rNQPSR
ý [_N&[Û*HKJMþ}R�TXR-R
] POJ WiR2]uR��XTKR
]®üg� P:	rÚKØ¿à
Ý-[\þ�[_ÚKÚKLOJM[MÝyH/áÅLOJ_ý ÿrTKJ�Û*þ}RE] � R-àgWX[MNQRE]�Ý�JMT�� � ÜXLO[\PSØ}J_T Ø}N�POJ�ÚKLSJa�rØÙ]uR0[LSR�
MÜXØ¿LOR-ý¨R
T5PONNQÚiR
Ý-Ø��iÝ-[�POØ}J_T2þÙ[\T � ÜX[� R
[_TX]C[�ý2[_ÚKÚKØ}T � POJ�ÿrTKJ�Û*þ}RE] � R�LSR
ÚKLSRENQR
T5PO[�POØ}J_T0á¢[_Ý-Ø}þ¿Ø¿POØ¿REN�þ}Ø}ÿ_RÝ�J_T�Ý�R-ÚKPON���[�PSPSLOØ¿WXÜuPSREN*[\TX]FÝ�JMTXNQPSLy[\Ø}T5PON-üuGIHXØ}NIý2[_ÚKÚKØ}T � R
NQPO[_WKþ}Ø}NSHKREN@[¨]KØ¿LOR
Ý�P*LSR
þ}[\PSØ}J_TW�R-PwÛ�R
R-T/POHKR0ÚKLOJ_WKþ}R-ý�NSÚX[_Ý-R�[_TX]�POHKR¨NQJMþ}ÜuPSØ}J_T/NSÚX[MÝ�R\üE� Ø¿PSH PSHKØÙN�áÅJ_LOý2[\þD[\ÚXÚKLSJ5[_ÝyH
LSR�
MÜXØ¿LOR-ý¨R
T5PON�Ý
[\T WiRIÚKLOJrÝ-R
NONQRE]pWA	VPSHXR@Ø}TuáÅR
LSR
TXÝ�R�ý2[_ÝyHKØ}TKR�PSHX[\PDWiR-þ}JMT � N>ÿrTKJ�Û*þ}R
] � R�àWX[_NSR
]ÄÝ�JMT�� � ÜXLO[\PSØ}J_T®üF&KJML [\TÄR>=K[_ý¨ÚKþ}RpáÅJ_LpÝ-J_ý¨ÚKþ}R�=/LSR�
MÜXØ¿LOR-ý¨R
T5PON
NSÚiR
Ý�Ø���Ý
[�POØ¿JMT Ø}Tÿ5TXJ�Û*þ¿RE] � R-àgW�[_NSR
]¨Ý�JMT�� � ÜKLO[\PSØ}J_TCN�	uNQPSR-ý2N@Û@R&LSR-áÅR-LIPOHKR&Ø}TMPOR-LOR
NQPSRE]2LOR
[_]KR-L@PSJ(���>�gü
xFyH� � lV�JjL� Z�}a_2��}Cl<mg^]��j,Y�ef[g_A�
Ö�T+LOR
Ý-R-T5P]	MR
[_LON>Û�JMLSÿVJMT�NSJ\áÙPwÛI[\LOR�LOR-ÜXNSRINwPOLSJMT � þ�	�áÅJrÝ-ÜXNSR
]+J_T+NSJ\áÙPwÛI[\LOR�ÚXLSJu]uÜXÝ�P�þ¿Ø}TKRENèf����^>û%� !��
$a�güF�?��^3N�]uØÙNQPSLOØ¿WXÜuPSR&POHKR0]uR��MR-þ}J_ÚKý¨R
T5P�R>G#J_LSP�J\á�PSHKR�LSR
ÜXNO[\WKþ}Rp[_NONSR�PON�Ja�_R
L
PSHKR&Ý�Ü�NwPOJ_ý¨R-LyN@WKÜuP*ÚKLOJa�rØ}]KØ¿T � [\TF[_NONQR-P@LOR-ÚiJMNSØ¿PSJML
	+PSHX[\P
Ý-[_T�WiR&ÜXNQRE]2POJ¨]uR-LOØ��_R
TXR-ÛÚKLSJu]uÜ�ÝZPON-ü
Ö�T¨PSHKRtB�J_TXÖ:��&ÄÚKLOJ\ãwR
Ý�P��uNQJ_áÙPwÛ@[_LSR
ÚKLSJu]uÜ�ÝZP�þ}Ø}TKREN�[\TX]�ÿrTKJ�Û*þ}R
] � R�à¾WX[_NSR
]�Ý�JMT�� � ÜKàLO[\PSØ}J_T2H�[C�_R�W�R
R-TFÝ�J_ÜXÚKþ}R
]��)��güKGIHKØÙNIÝ�J_ý�WKØ}TX[\PSØ}J_T0ý2[\ÿMR
N�ÜXNSR�J_á3PSHXR�ÿMR�	2WiR-TXR>�KPyNIJ\á

W�J_PSHFÛ�JMLSþÙ]KN��rÛ*HKØÙÝyH [_LSR"�
� GIHKR&ÚKLOJu]uÜXÝZP*þ}Ø}TKRV[\ÚKÚKLOJM[MÝyH2ÚKLOJa�rØ}]KR
N@[+W�[_NSØ}Ý
áÅLy[\ý¨R-Û@J_LOÿ0Ø}T�Û*HKØÙÝyH ØÉP*ØÙNI]uØÙNwPOØ}Tuà
� ÜKØÙNSHKR
]FWiR�PwÛ@R-R
T]uR��_R-þ}JMÚKý¨R-T5PIáÅJ_L�LSR
ÜXNSR [\TX]]uR��MR-þ}J_ÚKý¨R
T5PIÛ*Ø¿POH/LSR
ÜXNSR��iÝ
[\þ}þ}R
]ò ô\í0÷\ëÙîlå-î��_ëÙîiåyå-ìZëÙî��p[_TX]l÷Où_ù#øzëp�y÷\ïªë¢ô�îËå-î��_ëÙîiåyå�ìZëÙîA�a�iLSRENQÚiR
Ý�PSØ��_R
þ�	\ü

� UVTKJ�Û*þ}R
] � R�à¾WX[_NSR
]&Ý-J_T�� � ÜKLy[�POØ¿JMTpÜXNSR
NDáÅJMLSý2[_þMLOR-ÚXLSRENQR
TMPy[�POØ¿JMT&á¢[_Ý-Ø}þ¿Ø¿POØ¿REN®áÅJML�ý¨Jr]uàR-þ}Ø}T � PSHKR¨LOR-ÜXNO[\WXþ¿R�[_NONQR-PONVØ}Tl[Ý-J_T�� � ÜKLy[�POØ¿JMT/ý¨Ju]uR-þgünDI[_NSR
] J_T [FÝ�JMLSLOR
Ý�PV[_TX]Ý�JMTXNQØÙNQPSR
TMP�ý¨Jr]KR-þD[\TX]/[CNQJMÜKTX]/Ý-J_T�� � ÜKLy[�POØ¿JMTFÚKLSJuÝ-R
NON>��PSHKØÙN
[_ÚKÚKLOJM[MÝyH � ÜX[_LO[_TuàPSR
R
N�[0Ý�JMLSLOR
Ý�P��KÝ�JMý¨ÚKþ}R�POR�[_TX]CÝ-J_TXNSØÙNwPOR-T5P*NQJMþ¿ÜKPSØ}J_T¨POJ2[0Ý�J_T?� � ÜKLy[�POØ}J_T2ÚKLOJ_WXþ¿R
ýFü

22

� fDsMn
vw�¾�why{,+IvwhOt5��q
{5¹.-Xn
�wsrq�v�d@n
�wÈ
GIHKR�Ý�J_T?� � ÜKLy[�POØ}J_T×ý¨Ju]uR
þ*ÚKLOJa�5ØÙ]uREN+[POR>=rPSÜX[_þ
]uRENSÝ-LSØ}ÚuPOØ¿JMT×J_á
PSHXR [\ÚKÚXþ¿ØÙÝ
[�PSØ}JMT]uJ_ý2[_Ø¿T�üg��þÙNSJ?�3POHKRFÝ�J_T?� � ÜKLy[�POØ}J_T NQJMþ}ÜuPSØ}J_TlØÙN [/PSR�=5POÜX[\þI]uRENSÝ-LSØ}ÚuPOØ¿JMTlJ\á*PSHXR [MNSNSR�PyNPSHX[\P*[_LSR�TKR-RE]uR
]�PSJ0[_NONSR-ý�WKþ}RIPSHKR&Ý�JMT�� � ÜKLSRE]¨ÚKLOJu]uÜXÝZP
üKÖ�T2POHKR&[_NONQR-P@NQPSJ_LOR�PSHKR
LSRV[\LORPSHKR2LOR-Ü�NS[_WKþ}R�[MNSNSR�PyN>�3Øgü R\ü�ý¨Ju]uR
þ}N���]uJuÝ�ÜKý¨R
T5PONp[_TX]Äý¨JMNQPVTXJ\PO[_WKþ�	�PSHXR�Ý�Ju]uR_ügDI[_NSR
]

J_TFPSHXR+Ý�JMT�� � ÜKLO[\PSØ}J_TFNSJ_þ}ÜuPSØ}JMTCPOHKR TXR
Ý�RENSNO[\L'	�[MNSNSR�PyN
[\LORpØÙ]uR
TMPOØ��XR
]E��LSR-PSLOØ¿R��_RE]2áÅLOJ_ýPSHKRp[MNSNSR�P�NQPSJ_LOR&[\TX] [_NONSR-ý�WKþ}R
]#ü
xFy�x hil<mg_Ao��Lm<}aep�V_A[��v_��V_AoplV�X~�_A[Ej
��Ju]uR-þ¿à�]uLSØ��MR-Tp]uR��_R-þ}JMÚKý¨R-T5P>ØÙN�WX[MNQRE]pJ_T�ý¨Ju]uR-þ}Ø}T � [_TX]+ý¨R�PO[\àgý¨Ju]uR
þ}Ø¿T � [_ÚKÚKLOJM[MÝyHKR
N-ü
��Ju]uR-þ¿à�]uLSØ��MR-T��
LOÝyHXØÉPOR
Ý�PSÜKLOR èp������û:� R>=rPSR
TX]KN¨POHKR-ý Û*Ø¿PSHâPSHXR Ý�JMTXÝ�R
ÚuP2J\á&ý¨Ju]uR
þ
PSLy[\TXNQáÅJ_LOý2[�POØ¿JMT®ü8��Ju]uR-þ¿à�]uLSØ��MR-T×]uR��_R
þ¿JMÚKý¨R-T5P0ÜXNSR
N2[lý¨Ju]uR
þ¿Ø}T � þÙ[\T � ÜX[� RÄèª[\T ÜKTuà]uR-LOþ�	5Ø}T � [_WXNQPSLy[_ÝZPVNSÝyHXR-ý2[2[_TX]/[��5ØÙNSØ}WKþ}RVÝ-J_TXÝ-LSR-PSR�N�	rT5PO[�=���R\ü � ü®ß�TXØ���R
N���Ju]uR-þ}Ø}T �^3[\T � ÜX[� R èªß4�/^�û���û [_TX] Ø¿PON�NQR
ý2[\T5PSØÙÝ
N2èÙPOHKRCý¨RE[\TKØ}T � J_á�PSHXRCþÙ[\T � ÜX[� R0á¢[_Ý-Ø}þ¿Ø¿POØ¿RENOû]uR>�XTXØ¿T � POHKR&ÜXNSRVJ\áDý¨Jr]KR-þÙN�ü
��Ju]uR-þ�PSLy[\TXNQáÅJ_LOý2[�POØ}J_T ØÙNpPSHKRCTKR>=rP¨NwPOR-Ú POHX[�P0Ý�J_TA�MR-LSPONp[ý¨Jr]KR-þ�Ø}T5PSJ [\TKJ_PSHKR
L

ý¨Jr]KR-þgüg� Ø¿POHËPSHXØ}N+POHKR�NwPOR-ÚrÛ*ØÙNQR�PSLy[\TXNQáÅJ_LOý2[�POØ¿JMTÄáÅLSJMý [LOR�
5ÜKØ}LOR-ý+PSR
TMPyN&ý¨Ju]uR-þ@POJ
R>=uR
Ý-ÜuPO[_WKþ}R�Ý-Jr]KR&Ø}N@R
T��rØÙNO[� RE]#ü
xFy�� � Z?��_M�
�XZ?��_Am { _AZ?��l`[gef[g\ Z?[]m��"Z?��_M�
�XZ?��_�m¡�MlV[g¢]\`^g}CZ?j�epl`[
� ý2[�ãwJML Ú�[\LSP/J\á0H5ÜXý2[\T R>=uÚ�R
LQPOØÙNQR ØÙNFWiR-þ}Ø}R��_RE]ÇPOJÇW�RËÚ�[_NQP/R>=uÚ�R
LSØ}R
TXÝ�REN�ü�B@[MNQR-à
WX[_NSR
]FLOR
[MNQJMTKØ}T � ÚXLSJa�rØÙ]uR
N*[2ý¨Jr]KR-þ�áÅJML
LOR-ÚKLOR
NSR-T5POØ¿T � R�=uÚ�R
LSØ}R-T�Ý�R&Ø}T�NQJ_à¾Ý
[\þ}þ}R
]2�y÷�ð�å�ðèÅØgü R_ü áÅJMLSý¨R
L�Ý-J_T�� � ÜKLy[�PSØ}JMT¨ÚKLSJMWKþ}R-ý2Nyû�[\T�]2LOR-ÜXNSØ}T � PSHXR-ý áÅJMLINSJ_þ��rØ}T � TKR
Û Ý�JMT�� � ÜKLO[\àPSØ}J_T�ÚKLOJ_WXþ¿R
ý2N�üXGIHXR+ÿrTKJ�Û*þ}R
] � RVWX[_NSR Ø}T/Ý
[_NSR�à¾WX[_NSR
] LOR
[_NSJ_TXØ¿T � ØÙN�PSHKR0NQR-P�J_á�NwPOJ_LOR
]Ý-[_NSR
N�èÅØgü R\ü5PSHKR�ÚX[_NQP�R�=rÚiR-LOØ}R-TXÝ-REûZü���T�[\þ�	ra-Ø}T � [pÝ
[_NSR
ØÙN�]uR
þÙ[C	_R
]�ÜKT5POØ¿þ�Ø¿PON�LOR�POLSØ}R��![_þKáÅJMLNQJMþ��rØ}T � [*TKR
ÛÄÚXLSJMWKþ}R-ýFü-`�J�Û@R��MR-L��
[�P3PSHX[\P�PSØ}ý¨RDPSHXR�ÚKLOJ_WKþ}R
ý ØÙN®þ}R
NON®HX[_ÜKT5PSØ}T � �E]uÜKR�POJPSHKR
á¢[_ÝZP�PSHX[\P�J_TXR�J_TKþ�	+TKR-RE]KN�POJpÜKTX]KR-LyNwPy[\TX]0HKJ�ÛÇ]uØ�G#R-LOR-TXÝ-R
N�WiR�PwÛ@R-R
T¨PSHXR
ÚKLOJ_WKþ}R
ý
Ø¿T POHKR&LSREÝ-[_þ¿þ}RE]2R>=uÚiR-LOØ}R-TXÝ-RV[_TX]CPSHKR+Ý�ÜKLOLSR
T5PIÚXLSJMWKþ}R-ý [�GiREÝZP*PSHXR NQJMþ}ÜuPSØ}J_TCÚKLOJ_ÚiJMNSR
]
Ø¿T/PSHKR0LOR
Ý-[_þ}þ¿RE] R>=uÚ�R
LSØ}R
TXÝ�R_ü#GIHKR0NSJ_þ}ÜuPSØ}JMTFáÅJ_L�PSHKR0LOR�PSLOØ}R��MR
]�Ý-[MNQR+ØÙN
R�=u[_ý¨Ø}TKR
]�[_TX]
[\ÚKÚKþ}Ø}R
]2PSJ�PSHXRpÝ�ÜKLOLSR
T5PIÚXLSJMWKþ}R-ý Û*Ø¿PSHFNQÜXØÉPy[\WKþ}R�ý¨Jr]KØ��iÝ-[�POØ}J_TXN�� £a�ªü
�ÇLSRE[_NSJ_TX[_WKþ}R*]uR>�XTXØÉPOØ}J_T0J\á�[pÝ
[_NSR�ØÙNsu_[pÝ-J_T5PSR�=rPSÜX[_þ¿Ø}a
R
]+ÚKØ}R
Ý�R*J_á�ÿrTKJ�Û*þ}R
] � R@LOR-ÚKàLSRENQR
TMPOØ}T � [_T+R�=uÚ�R
LSØ}R-T�Ý�R�uKü\GIHKR-LOR*[\LOR�PwÛ@J�P:	5ÚiR
N�J\áiÝ
[_NSR
N�POHX[�P�Ý
[\T�W�R�]uØÙNQPSØ}T � ÜKØÙNQHKRE]E�

�¥¤ ô\ìZí0÷_ï¢ëÙó�å��O÷�ð-åZðDÝ-[\ÚKPSÜKLOR@PSHKRIP:	rÚKØÙÝ-[_þuNQØ¿PSÜ�[�PSØ}JMT�èÅR_ü � ü\LSR-áÅR-LOR-TXÝ-RIÝ-J_T�� � ÜKLy[�POØ¿JMTXNyû¾àØgü R_ü#[CNQØ¿PSÜ�[�PSØ}JMTFPSHX[\P�JuÝ-Ý-ÜKLyN
ý¨JMLSR&POHX[\T J_TXÝ-R+[_TX]�POHX[�PVJuÝ-Ý�ÜXLON�Ø}T�PSHKR0NO[\ý¨RpJML
[�P�þ}R
[MNwP¦�_R
L
	2NSØ}ý¨Ø}þ}[_L�ÛI[C	rN-ü

� GIHKR NSR
Ý-J_TX]âP:	rÚiR ØÙNFðgùXå'�-ë¢÷�øb�y÷!ð-å�ð'�@PSHXR2u\JMÜuPQà¾J\áÙàgPSHXR�à¾TKJ_LOý2[\þ�u NSØ¿PSÜX[\PSØ}J_T�N�èÅR\ü � üÝ�ÜXNQPSJMý¨R-LSà¾NSÚiR
Ý�Ø���Ý@ÚKLOJu]uÜXÝ�P�R>=rPOR-TXNSØ}J_TXNyûyürGIHKØÙN�ý¨R
[_TXN�LOR-ý¨R
ý+WiR-LOØ}T � Û*HKR-LOR4��[\LOØ¿à[�POØ¿JMT2áÅLOJ_ý PSHKR&TKJMLSý2[_þXPOJrJ_ÿ2ÚKþÙ[MÝ�R\ü
`�J�Û@R��_R
L���TKJ_PC[\þ}þ*POHKR Ý
[_NSR
N¨Û*HKR
LSR/NSJ_ý¨R���[\LOØÙ[�POØ¿JMTËáÅLOJ_ý PSHKR u\TKJMLSý2[_þ�u�PSJrJ_ÿ

ÚKþÙ[_Ý�R*[_LSRILOR-þ}R���[\T5P
ü_GIH5Ü�N>�MNSÚiR
Ý�ØÙ[_þXÝ-[MNQREN�[\LOR@JMTKþ�	&PO[_ÿ_R
T�Ø}T5PSJ&[MÝ-Ý�JMÜKT5P�Û*HKR-T�POHKR�	0[\LOR
NQØ � TXØ��iÝ-[\T5P�áÅJML�POHKR�Ja�_R-Ly[\þ}þXÝ-J_T5PSR�=rP�J\á3PSHKRVÝ-[MNQR_ü�§�Ø��_R
T¨PSHXR�Ý-J_T�� � ÜKLy[�PSØ}JMT¨ÚKLSJuÝ-R
NON>�r[Ý-[_NSR*Ý-[_T+WiR�LOR-ÜXNSR
]+WA	pÜXNSØ¿T � Ø¿P�[_N�[&NSJ_þ}ÜuPOØ}J_TF�!ÚX[\LSPONDJ_áiØ¿P�[_N�[&NSJ_þ}ÜuPOØ}J_TpJML�ý¨Jr]KØÉáH	rØ}T �ØÉPIPOJ2NQÜKØ¿P@PSHKRpÝ-ÜKLOLSR
TMP�Ý-J_T�� � ÜKLy[�PSØ}JMT2ÚKLOJ_WKþ}R-ý èªNQR
R&R\ü � ü<� ¨a�Åûyü
© s����wµVª mEmZÀ�À�À ½ n
~&� ½ n
vw�!m-~p¹Mq!m
« s����wµVª mEmZÀ�À�À ½ �M~&¶ ½ n-vw�

23

¸�hy¼ » hyhy¼ » �
xFyH¬ � lV�JjL� Z�}a_2��_��V_Aofl­�X~�_A[Ej%hi_�j�kglnm]l`opl`\Vef_��
GIHKR-LOR�[\LORv��[_LSØ}J_Ü�N�NSJ\áÙPwÛI[\LORF]uR��MR-þ}J_ÚKý¨R
T5P+ý¨R�POHKJu]uJ_þ}J � Ø}R
NpPSHX[\P�Ý-[\TâWiR/ÜXNSR
]E��R�=ràPSR-T�]uR
] J_L�NSR-R
T [_N � ÜKØÙ]uR
þ}Ø¿TXR
N@áÅJ_L�]uR>��TKØ}T � [¨TXR-Û ý¨R�POHKJu]uJ_þ}J � 	\üV�uJ_ý¨RpÛ@R-þ}þ¿àgÿrTKJ�Û*Tý¨R�PSHXJr]KJ_þ}J � Ø¿REN2[\LOR PSHKR�&XR
[�POÜKLOR�à¾J_LOØ¿R
T5PSR
]®��R-ÜXNSR¯��R�POHKJu] èf&]@���� û2�±°��pÛ*HXØ}ÝyH ØÙNWX[_NSR
]×J_TËPOHKR�&KR
[\PSÜKLOR�à¾J_LOØ}R-T5PSRE]¯�
JMý2[\Ø}T���T�[\þ�	uNQØÙN�èf&]@�����ûv� ²��f��UVJ_WXL'� Û*HKØÙÝyHËØÙN
[\WiJ_ÜuP*Ý�JMý¨Ú�JMTKR-T5PQà¾WX[MNQRE]0ÚKLSJu]uÜ�ÝZP�þ}Ø}TKR�R
T � Ø}TKR
R-LOØ}T � Û*Ø¿PSH�ß��/^¡� ³��f����ÜX^]�uÞ�à¾Ö�Û*HKØÙÝyH]uR
[_þ}N�Û*ØÉPOH2]uR-LOØ��rØ¿T � Ø}TXNQPO[_TXÝ�RENDáÅLOJ_ý [&ÚKLOJu]uÜXÝZP@þ}Ø¿TXR*Ø¿TKáÅLO[MNwPOLSÜXÝ�PSÜKLORt����´a�i[\TX]�B�JMT�� � àÜKLO[\PSØ}J_TCØ}TCÖ�TX]KÜXNwPOLSØÙ[_þE��LSJu]uÜ�ÝZP�&X[_ý¨Ø¿þ}Ø}R
N
èJB�J_TXÖ:��&�û��)"�ªü
GIHKR,B�JMTKÖ:��& ý¨R�PSHXJr]KJ_þ}J � 	�J�G#R-LyN�áÅÜKþ}þ�LSR
ÜXNSR+J_á�PSHXR0Ý-J_ý¨ÚKþ}R-PSR+[MNSNSR�PVLOR-ÚiJMNSØÉPOJ_L'	PSJ¨POHKR Ý�JMý¨ÚKþ}R�POR�NQPO[�GÄ]uÜKRpPSJ¨Ø¿PON*LOR-ÚXLSRENQR
TMPy[�POØ¿JMT�Ø}T PSHKR+Ý�J_T?� � ÜKLy[�POØ}J_T�ý¨Ju]uR
þgüXGIHKØÙN[\ÚKÚKLOJM[MÝyH NQPSØ}þ}þ#þÙ[_ÝyÿuNIÿrTKJ�Û*þ}R
] � R�[_W�JMÜuP*PSHKR ÚKLSR��rØ¿JMÜXNSþ�	¨]uR
LSØ��MR
]CÚKLSJu]uÜ�ÝZPON��XHKJ�Û@R��MR-L
üGIHKØÙN&ý¨R
[_TXN�PSHX[\P+NQPSØ}þ}þ�]uJ_ÜKWXþ¿R¨Û@J_LOÿ/ý2[C	/WiR�]uJMTKR2Û*HKR
LSR¨LOR-Ü�NQR¨Û@J_ÜKþÙ] HX[C�_R¨WiR-R
T

Ú�J5NSNSØ}WKþ}R\ü?Dµ	�ý2[\ÿrØ}T � ÜXNSR&J\á�[¨Ý-[_NSR�à¾WX[MNQRE]C[_ÚKÚKLOJM[_ÝyHn�uNSJ\áÙPwÛI[\LORVÚKLOJr]KÜXÝZP�þ}Ø}TKR
NIÝ-J_ÜKþÙ]W�R&R
TKHX[\T�Ý�R
]CJ_L*R��_R
TCLOR-ÚKþÙ[MÝ�R
]�Û*Ø¿PSHF[+LOR�
5ÜKØ}LOR-ý¨R
TMPyNwà�]uLOØ��_R-T0LOR-ÜXNSR�áÅLO[_ý¨R-Û@J_LOÿ�ü

¶ OIÓ4;¥;PW�Ð?·
GIHKR¨Ø � TKJMLO[_TMP�LSRE[_]uR
L�ý2[C	/[_L � ÜKR+PSHX[\P&PSHKRr�*R����uR-R���� ÚKLOJ\ãwR
Ý�PVPSLOØ¿REN�PSJ/]uR��XTKR#	_R-P[\TKJ_PSHKR
L@NSJ\áÙPwÛI[\LOR
]uR��_R-þ}JMÚKý¨R-T5P�ý¨R-PSHKJu]uJMþ¿J � 	_ü��ÄR
þ}þf�MPSHKØÙN�ØÙN�POLSÜKR4�0[\P@þ}RE[_NQP�PSJ0NSJ_ý¨RR>=rPSR
TMP
ü?D�ÜKP�PSHXØ}N�ÚKLOJ\ãwREÝZP@Ý-J_ý�WKØ}TKR
N�NSR��MR-Ly[\þi[\LOR
[_N�J\á�LOR
NSR
[_LOÝyH�PSH�[�PIHX[C�_R�TXR��_R
L�WiR-R
T
Ý�J_ý�WKØ}TKRE]¨W�R-áÅJ_LOR\ü
�ÇÝ�J_HXR-LOR-T5P�Ý�JMý+WKØ}TX[\PSØ}J_T J\á#LSR�
MÜXØ¿LOR-ý¨R
T5PON�R-T � Ø}TKR-R
LSØ}T � �ELOR-ÜXNO[\WXþ¿R*[MNSNSR�P�þ}Ø}WKLO[_LSØ}REN>�ý¨Jr]KR-þDPSLy[\T�NwáÅJMLSý2[\PSØ}J_T [_TX]¸
5ÜKR-L'	rØ¿T � Ý
[\Tl[_ÝyHKØ}R��MR+R�GiREÝZPOØ��MR0LSR
ÜXNQR0J_á�POHKR�]uØ�G#R-LOR-T5P[_NONQR-PON�P:	rÚiR
N�Ø¿T2NSJ\áÙPwÛI[\LOR*R-T � Ø}TKR-R
LSØ}T � ü\GIHKR
NSR�[MNSNSR�P�P:	rÚiR
N@[\LOR�LSR�
5ÜKØ}LSR
ý¨R-T5PON�ý¨Ju]uR-þÙN��[\LyÝyHKØ¿PSR
Ý�PSÜKLOR�ý¨Jr]KR-þÙN>��]uR-PO[_Ø¿þ}RE]]uRENQØ � TÄ[\TX]lÝ-Jr]KR\üXB�ÜKLOLOR-T5PpNwPy[�PSR0Ø}T NQJ_áÙPwÛ@[_LSR�LOR-ÜXNSRØ}N�þ¿Ø}ý¨Ø¿PSRE]¨POJ2PSHXR NQJMþ}ÜuPSØ}J_TF[\T�]�]uJrR
N�TKJ\P�Py[\ÿMR&PSHKR ÚKLSJMWKþ}R-ýBNQÚiR
Ý-Ø��iÝ-[�POØ}J_T*�CØgü R_üXPSHXR

LSR�
MÜXØ¿LOR-ý¨R
T5PON#NQÚiR
Ý-Ø���Ý-[\PSØ}J_T���Ø}TMPOJ�[_Ý
Ý�J_ÜXTMP
ü�D@ÜuP3Ø¿P�ØÙN#PSHXØ}N3LSR�
5ÜKØ}LSR
ý¨R-T5PONiNQÚiR
Ý-Ø���Ý-[\PSØ}J_T
PSHX[\P
Ý-[\T WiR
NQP�R>=uÚKLOR
NON*NQØ}ý¨Ø}þÙ[\LOØÉPOØÉREND[\TX]F]uØ�G#R-LOR-TXÝ-R
N@W�R-PwÛ�R
R-T�NSJ\áÙPwÛI[\LOR�N
	uNwPOR-ý2N-ü

¹ 3<º'3�Ð­3�Î�ÔE3gU
» ½ fDs��q-vwxz{5�
hy{���¼ ½ ª?½ xz����hy{M��trq-��x´hSv��whI¾�v�|}q
�����M{5�
�!nE{pÆ�{M|}n-vQ¹MhOvw�M{5�
hy{ ½ eª{ �p��5{��whOvZ�_Æ ½ �!hZ¹ ½ ª
½lx´����hO{5��trq-��xzhOv��why��+*nE{M¿5�E�_vwx´hSvwhy{ ½ eg{"¿�À2Á »LÁ�Á �EÃ� ½�Â nE��kQs��8Ã ½ ª ¼Ihy��xz�E{ÅÄ �@��h�n
| » n-|¿�ªÀ�q-vwh Æ�vwkQs5x��whykO�w�_vwhy�Lª�Æ�¹Mn
µM�wxz{5�/q-{r¹�¾3�EnE¶z�\x´{M� qÊ vwn\¹M�MkO��-�xz{Mh�Æ�µ5µ_vwn!q-kSs ½ Æ@¹5¹_xz��nE{MºH½ hy��¶zhO��Á¢��Æ�Æ�Æ�Ã

c_½ j�¶zhy~&hO{\�w�y� Ê#½ �µÇ�n
v��wsMvwn
µ��µ- ½ ª » n
|É�gÀDq-vwh Ê vwn\¹_�5kO��-Xx´{Mhy�Lª Ê vQq
kS�wx´kOhy� q-{r¹ Ê q����whOvw{5� ½Æ�¹5¹_x´��n
{MºH½FhO��¶´hS�2Á¢��Æ�ÆE�!Ã
� ½ d�n
�wÈE�C- ½ �C½ nE¶��whOvZ�C+ ½ �a+IvwhOt5�y��f ½ ��¼@hyhy¶z�¾��vQq_� »u½ � » xz{5{Mhy~pq_�C¼ ½ �aÇ@x ·¾s_�Mxz�y�CÃ ½ �"¼0q-k���vwhy�En-vZ�
Ã ½ ª#j�nE{"¿r�
�MvQq-�wxzn
{�n
|�eg{5¹M�M�¾��vwxÉq-¶ Ê vwn\¹M�5kS��o®q
~&xz¶zxzhy��º�fDsMh*j�nE{Me Ê o(¼�hO�wsMn\¹MnE¶zn
�
� ½ Æ��Eq
È hOvw¶´q
�_� Â hOvw¶zx´{�Á¢��Æ�ÆE�!Ã� ½
» q
��xz�\�5~pq�vZ�t¼ ½ ª jDq-��hOº¢trq
��hy¹9¸�hZq
��n
{5xz{5� |}n-v » n-|¿�ªÀ�q-vwh ¸�hO�5��h ½ eg{­ªb+*{5nZÀ�¶zhZ¹_�Eh
Â q
��hZ¹pj�n
~&µ5�M�whSv » �_�¾�why~&�¾º¢¸�hy��hyq-vwkQsVq
{5¹VÆ�µMµ5¶zxzkZq-�wxzn
{5��ÁÙeg{��whOvw{rq��wxznE{rq-¶rj�n
{M|¿hOvwhy{5kOh�n
{
+*{MnZÀ�¶´hy¹M�EhSº Â q
��hZ¹ j�nE~&µ5�_�whOv » �M�¾�whO~&�SÃQ� Â nE~�trq
xÙ�Keª{r¹Mx´q\�VÇ@q-vwn
�wq Ê �5t5¶zxz��s5xz{M��d@n
�5��hE�
-XnE{5¹MnE{CÁ »ÉÁ�Á�Ê Ã c »�Ë � �

Ê ½�Ê ¿5�wÈO{5hOvZ�?+ ½ ªpjDq-��hOº¢trq-��hZ¹�j�nE{"¿r�
�MvQq-�wxzn
{ n
|�fihykQs5{5xzkZq-¶ » �_�¾�why~&� ½ ++��5{M�¾�w¶´xzkQs5hVeª{��why¶z¶´x�º�
hy{5È�Ì�Í�ÎAÏ Á »ÉÁ�Á c Ã�� � Ë c Æ

24

Ê fDsMn
vw�¾�why{,+IvwhOt5��q
{5¹.-Xn
�wsrq�v�d@n
�wÈ
� ½ +�q-{5�_�`+ ½ j ½ �E-XhyhE�VÃ ½ �#¼In
{5n
s5n�hE� Ê#½ ª oMhZq-�w�_vwhOº¢n
vwxzhy{��whZ¹Cvwhy�M��h&~&hO�ws5n\¹/Á}|}n-vw~+Ã ½ eÐ¾<¾<¾» n
|É�gÀ�q�vwh�Ñ"Î�Á � Ã*Á¢��Æ�Æ!�EÃ���Ò ËaÊ �
Ò ½ +�q-{5�_�A+ ½ �Kj�n
s5hy{X� »K½ �5d@hy���y��Ã ½ ��Ç@n��
q
�u��½ ½ � Ê hO�whOvw��n
{�� »u½ ª�o5hZq��w�MvwhOº¢n-vwx´hO{\�why¹�¼InE~pq-xz{Æ�{rq-¶z�_��xz��ÁÅo`Ó@¼@ÆIÃro#hZq
��xzt5xz¶zx��g� » �w�r¹_� ½ fihOkSsM{5xzkZq
¶E¸�hyµun-v���j8¼��Im » ¾�eªº Á Æ-ºªfD¸�ºfÆE� » Á »ÉÁ�Á Æ�Ã
Á ½ ÆD�w�\xz{5��n
{��Xj ½ ª
j�n
~&µunE{5hO{\��º¢t5q
��hZ¹ Ê vwn\¹M�5kS�I-�xz{Mh�¾�{5�Exz{MhyhOvwxz{5�pÀ�x��wsC�¦¼#- ½ Æ�¹5¹Mxz��n
{Mº
½ hy��¶zhO��Á¢��Æ�Æ!�!Ã

» Æ ½�Â qZ�!hOvZ�"Ã ½ �u�Iq-kyhy�u�uj ½ �A¼��M�wsMx´�_�5¼ ½ ��½ x´¹_hy{��Mf ½ ª Ê ��- » ¾�º¢e
ª_¼IhSvwx´�\xz{5��eg{M�¾�Qq
{5kOhy�D|¿vwn
~ qÊ vwn\¹M�MkO�<-�xz{MhDeg{_|¿vQq
�¾��vw�MkO�w�Mvwh ½ eª{VªE���ws�eÐ¾<¾g¾�eg{��whOvw{5q-�wxznE{5q
¶Mj�nE{_|}hOvwhy{Mkyh�q
{5¹�½ n
vw�\��s5n
µn
{&�ws5hÔ¾3{M�Exz{5hyhSvwx´{M��n-|®j�n
~&µ5�_�whOv Â q-��hZ¹ » �_�¾�why~&�y��¾3¹Mxz{\t5�_vw�Es�� » kyn-�w¶´q
{r¹2Á¢��Æ�Æ�Æ!Ã�� c � Ë� � �

25

Semantic Web Technology as a Basis for Planning and Scheduling Systems

Bernd Schattenberg and Steffen Balzer and Susanne Biundo
Dept. of Artificial Intelligence

University of Ulm, D-89069 Ulm, Germany
{firstname }. {lastname }@uni-ulm.de

Abstract

This paper presents an architecture for planning and schedul-
ing systems that addresses key requirements of real-world ap-
plications in a unique manner. The system provides a robust,
scalable and flexible framework for planning and schedul-
ing software through the use of industrial-strength middle-
ware and multi-agent technology. The architectural concepts
extend knowledge-based components that dynamically per-
form and verify the system’s configuration. The use of stand-
ardized components and communication protocols allows a
seamless integration with third-party libraries and existing
application environments.
The system is based on a proper formal account of hy-
brid planning, the integration of HTN and POCL planning.
The theoretical framework allows to decouple flaw detection,
modification computation, and search control. In adopting
this methodology, planning and scheduling capabilities can
be easily combined by orchestrating respective elementary
modules and strategies. The conceptual platform can be used
to implement and evaluate various configurations of planning
methods and strategies, without jeopardizing system consist-
ency through interfering module activity.

Introduction
Hybrid planning – the combination of hierarchical task net-
work (HTN) planning with partial order causal link (POCL)
techniques – turned out to be most appropriate for complex
real-world planning applications (Estlin, Chien, & Wang
1997), like crisis management support (Biundo & Schat-
tenberg 2001; Castillo, Fdez-Olivares, & González 2001).
Here, the solution of planning problems often requires the
integration of planning from first principles with the utiliza-
tion of predefined plans to perform certain complex tasks.

Previous work (Schattenberg, Weigl, & Biundo 2005) in-
troduced a formal framework for hybrid planning, in which
the plan generation process is functionally decomposed into
well-defined flaw detecting and plan modification generat-
ing functions. As an important feature of this approach, an
explicit triggering function defines, which modifications are
suitable candidates for solving which flaws. This allows
to completely separate the computation of flaws from the
computation of possible plan modifications, and in turn both
computations can be separated from search related issues.
The system architecture relies on this separation and exploits
it in two ways: module invocation and interplay are specified

through the triggering function while the explicit reasoning
about search can be performed on the basis of flaws and
modifications without taking their actual computation into
account. This explicit representation of the planning strategy
allows for the formal definition of a variety of strategies,
and even led to the development of novel so-calledflexible
strategies.

The functional decomposition induces a modular and flex-
ible system design, in which arbitrary system configurations
–viz. planning and scheduling functionalities– can be integ-
rated seamlessly. A prototype of this architecture served as
an experimental environment for the evaluation of flexible
strategies as well as a conceptual proof for the expandabil-
ity of the system with respect to new techniques: namely,
the integration of scheduling (Schattenberg & Biundo 2002;
2006) and probabilistic reasoning (Biundo, Holzer, & Schat-
tenberg 2004; 2005).

While (Schattenberg, Weigl, & Biundo 2005) presen-
ted the theoretical framework for a straight-forward system
design for hybrid plan generation, a number of functional
and non-functional requirements are obviously not met by
such an architectural nucleus when it comes closer to real-
world application scenarios like crisis management support,
assistance in telemedicine, personal assistance in ubiquit-
ous computing environments, etc. Like any other mission
critical software in these contexts, planning and scheduling
systems should feature characteristics which call for highly
sophisticated software support:

1. declarative, automated system configuration and verifica-
tion – for fast, flexible, and safe system deployment and
maintenance, and for an easy application-specific config-
uration tailoring

2. scalability, including transparency with respect to system
distribution, access mechanisms, concurrency, etc. – for
providing computational power on demand without addi-
tionally burdening system developers

3. standards compliance – for integrating third-party sys-
tems and libraries, and for interfacing with other services
and software environments

Each of these characteristics represents a challenge in its
own for any software environment, and this is in particu-
lar the case for planning and scheduling applications. This
paper describes a novel planning and scheduling system ar-

26

chitecture which essentially addresses all of the above chal-
lenges, and shows how the formal framework of (Schat-
tenberg, Weigl, & Biundo 2005) has been incorporated. It
shows not only how modern software technology –in partic-
ular middleware and knowledge-based systems– can be suc-
cessfully applied to a prototypical academic planning soft-
ware, but also illustrates how (in principle) any planning and
scheduling system can benefit from it. The resulting sys-
tem performs a dynamical configuration of its components
and even reasoning about the consistency of that configura-
tion is possible. The planning components are transparently
deployed, distributed (including an optimized concurrency),
and load-balanced while retaining a relatively simple pro-
gramming model for the component developer. Standard-
ized protocols and components finally provide easy access
to other software products and services.

The rest of this document is organized as follows: The
next section presents the formal framework of hybrid plan-
ning on which our approach is based. Then a reference plan-
ning process model is defined, as an overview for the archi-
tecture. This is followed by a description of the architecture
components, how the middleware is used and how a refined
planning process model is realized. After that, there is a sec-
tion devoted to the use of knowledge representation mech-
anisms in the system. The paper concludes with an overview
over related work and some final remarks.

Formal Framework
Our planning system relies on a formal specification of hy-
brid planning (Schattenberg, Weigl, & Biundo 2005): The
approach features a STRIPS-like representation of action
schemata with PL1 literal lists for preconditions and effects
and state transformation semantics based on respective atom
sets. It discriminates primitive operators and abstract ac-
tions (also called complex tasks), the latter representing ab-
stractions of partial plans. The plan data structure, in HTN
planning referred to astask network, consists of complex
or primitive task schema instances, ordering constraints and
variable (in-)equations, and causal links for representing the
causal structure of the plan. For each complex task schema,
at least onemethodprovides a task network for implement-
ing the abstract action.

Planning problems are given by an initial task network,
i.e. an abstract plan, a set of primitive and complex task
schemata, and a set of methods specifying possible imple-
mentations of the complex tasks. A partial plan is a solution
to a given problem, if it contains primitive operators only,
the ordering and variable constraints are consistent, and the
causal links support all operator preconditions without being
threatened.

Flaws
The violation of solution criteria is made explicit by so-
calledflaws– data structures which literally “point” to de-
ficiencies in the plan and allow for the problems’ classifica-
tion: A flaw f is a pair(flaw,E) with flaw indicating the
flaw class andE being a set of plan components the flaw
refers to. The set of flaws is denoted byF with subsets
Fflaw for given labelsflaw.

E.g., the flaw representing a threat between a plan
step tek and a causal link〈tei, φ, tej〉, is defined as:
(Threat, {〈tei, φ, tej〉, tek}). In the context of hybrid plan-
ning, flaw classes also cover the presence of abstract actions
in the plan, ordering and variable constraint inconsistencies,
unsupported preconditions of actions, etc.

The generation of flaws is encapsulated by detection mod-
ules, i.e. functions that take as an argument a plan and re-
turn a set of flaws. Without loss of generality we may as-
sume, that there is exactly one such function for each flaw
class. The function for the detection of causal threats, e.g.,
is defined as follows:
fdet

CausalThreat(P) 3 (Threat, {〈tei, φ, tej〉, tek}) iff:
tek 6≺∗ tei or tej 6≺∗ tek in the transitive closure≺∗ of
P ’s ordering relation and the variable (in-) equations of
P allow for a substitutionσ such thatσ(φ) ∈ σ(del(tek))
for positive literalsφ andσ(|φ|) ∈ σ(add(tek)) for neg-
ative literalsφ.

Modifications
The refinement steps for obtaining a solution out of a prob-
lem specification (which means to get rid of any flaws) are
explicit representations of changes to the plan structure. A
plan modificationm is a pair(mod, E⊕ ∪ E) with mod
denoting the modification class.E⊕ andE	 are element-
ary additions and deletions of plan components, respect-
ively. The set of all plan modifications is denoted byM
and grouped into subsetsMmod for given classesmod.

The following structure represents adding an order-
ing constraint between to plan stepstei and tej :
(AddOrdConstr, {⊕(tei ≺ tej)}). Further examples of hy-
brid planning modifications are the insertion of new action
schema instances, variable (in-) equations, and causal links,
and of course the expansion of complex tasks according to
appropriate methods.

As with the flaws, the generation of plan modifications
is encapsulated by modification modules. These functions
take a plan and a set of flaws as arguments and compute all
possible plan refinements that solve flaws. E.g., promotion
and demotion as an answer to a causal threat is defined as:

fmod
AddOrdConstr(P, {f, . . .}) ⊇ { (AddOrdConstr, {⊕(tek ≺ tei)}),

(AddOrdConstr, {⊕(tej ≺ tek)})}
for f = (Threat, {〈tei, φ, tej〉, tek}).

Refinement-based Planning
It is obvious that some classes of modifications address par-
ticular classes of flaws while others do not. This relation-
ship is explicitly represented by the so-calledmodification
triggering functionα which relates flaw classes with suit-
able modification classes (cf. (Schattenberg, Weigl, & Bi-
undo 2005)). As an example, causal threat flaws can in prin-
ciple be solved by expanding abstract actions which are in-
volved in the threat, by promotion or demotion, or by separ-
ating variables through in-equality constraints (cf. (Biundo
& Schattenberg 2001)):

α(FThreat) = MExpandTask ∪MAddOrdConstr∪
MAddVarConstr

27

Please note, that the triggering function states nothing about
the relationship of the actual flaw and modification in-
stances.

Apart from serving as an instruction, which modifica-
tion generators to consign with which flaw, the definition
of the triggering function gives us a general criterion for dis-
carding un-refineable plans: For any detection and modi-
fication modules associated by a trigger functionα, fdet

x
andfmod

y1
, . . . , fmod

yn
with My1 ∪ . . . ∪Myn

= α(Fx): if⋃
1≤i≤n fmod

yi
(P, fdet

x (P)) = ∅ then P cannot be refined
into a solution.

A generic algorithm can then be defined which uses these
modules (see Alg. 1): In a first phase, the results of all de-
tection module implementations are collected. In a second
phase, the resulting flaws are propagated according to the
triggering function1 α to the respective modification module
implementations. If any flaw remains un-answered, a fail-
ure is indicated. A strategy module selects in a third phase
the most promising modification, which is then applied to
the plan. The algorithm is then called recursively with that
modified plan. The strategy also serves as a backtracking
point of the procedure.

Algorithm 1 A generic planning algorithm, based on expli-
cit flaw and modification computation

plan(P, T, M):
F ← ∅
for all fdet

x do
F ← F ∪ fdet

x (P)
if F = ∅ then

return P
M ← ∅
for all Fx = F ∩ Fx with Fx 6= ∅ do

answered← false
for all fmod

y withMy ⊆ α(Fx) do
M ′ ← fmod

y (P, Fx)
if M ′ 6= ∅ then

M ←M ∪M ′

answered← true
if answered= false then

return fail
return plan(apply(P, fstrat

z (P, F, M)), T, M)

(Schattenberg, Weigl, & Biundo 2005) demonstrated how
planning strategies are formally defined in that framework
and illustrated its potential. Several adaptations of strategies
taken from the literature were presented, as well as a set
of novel flexibleplanning strategies. The latter exploit the
explicit flaw and modification information, which allows
for selection schemata that are not defined along flaw or
modification type preferences, but perform an opportunistic
way of plan generation. In a first series of experiments, a
set of flexible and fixed, classical strategies competed on a
former planning competition benchmark for HTN systems,
the UMTranslog domain as it has been shipped with the
UMCP system. It turned out, that flexible strategies are not
only competitive to their fixed ancestors, but also showed

1This makes the algorithm completely independent from the ac-
tually deployed module implementations.

Strategy

Inspector

Constructor

Assistant

Phase 1: make expertises

Modification cycle

Assistant cycle

Phase 2: detect flaws

Phase 3: compute modifications

Phase 4:
modify

blackboard

Figure 1: The reference planning process model for PANDA

high optimization potential and –due to their opportunistic
modus operandi– can easily be combined.

Architecture Overview
In following the proposed design of the last sections, the
basic architecture of PANDA (Planning and Acting in a Net-
work Decomposition Architecture) is that of a multiagent-
based blackboard system. The agent societies map directly
on the presented module structure, with the agent metaphor
providing maximal flexibility for the implementation.

Inspectorsare implementations of flaw detection mod-
ules. There is one such agent per flaw class.

Constructorsare agent incarnations of the plan modifica-
tion generating modules. We may assume, that each modi-
fication class is represented by one such agent.

Assistantsprovide shared inference and services which
are required by other agents. Assistant agents propagate im-
plications of temporal action information transparently into
the ordering constraints, simplify variable constraints, etc.

Coordinatorsimplement the planning strategy module by
synchronizing the execution of the other agents and perform-
ing the modification selection. Currently only one coordin-
ator is allowed in the system – the so calledstrategy.

Figure 1 shows the reference planning model for PANDA ,
which defines the agent interaction. A planningcyclecorres-
ponds to an iteration of a monolithic algorithm (cf. Alg. 1).
It consists of two sub-cycles that are divided into 4 phases
(see Fig. 1), in which the agents execute concurrently.

Phase 1: Assistants repeatedly derive additional informa-
tion and post it on the blackboard. This phase ends when
no member of the assistant community added information
anymore.

Phase 2: Inspectors analyze the current plan residing on the
blackboard and post the results, i.e. the detected and pri-
oritized flaws, to the strategy and to the constructors as-
signed to them.

Phase 3: Constructors compute all possible modifications
for the received flaws and send them along with a prioriz-
ation to the strategy.

Phase 4: The strategy compares all results received from
the inspectors and constructors and selects one of the
modifications to be executed on the current plan. A plan-
ning cycle is hereby completed and the system continues
with phase 1 to execute the next planning cycle.

28

Phase transitions are performed only by the strategy when
all participating agents have finished execution. Thus, the
phase transitions can be viewed as synchronization points
within the planning process. The strategy modifies the plan
until no more flaws are detected or an inspector published
a flaw for which no resolving modification is issued. In the
first case, the current plan constitutes a solution to the given
planning problem, in the latter case the planning process has
reached a dead end and the system has to backtrack in order
to execute a different modification on the strategy’s stack.
The blackboard is implemented as a stack that stores the
current plan, all derived information, and performed modi-
fications. This structure enables the strategy to backtrack the
system to a certain point.

The following sections will show, how the reference
planning process model has been implemented, using mid-
dleware and knowledge-based technology. The chosen
multiagent-system is based on on an industrial-strength mid-
dleware and uses an explicit knowledge representation in
the implementation of the necessary protocols. A refined
version of the reference model will then allow us to exploit
agent concurrency more efficiently.

A Knowledge-based Middleware
Core Components
An obvious implementation for a planning system following
the reference process model would still run in a sole Java vir-
tual machine, viz. on a single computational resource. This
stands in contrast to the requirements that complex and dy-
namic application domains demand. For crisis management
support, e.g., information must be gathered from distributed
and even mobile sources, the planning process requires a lot
of computational power, etc. So scalability and distribution
play key roles in the proposed system architecture, while
maintaining the (simple but effective) reference process.

The main aspect in middleware systems like application
servers is to hide the mechanisms that enable the distrib-
uted handling of objects from the programmer. Thus, it is
possible to develop distributed applications much more effi-
ciently. In other words, such middleware systems make dis-
tribution issuestransparentto the programmer. Examples
for transparency in middleware systems are location trans-
parency, scalability transparency, access transparency, con-
currency transparency etc. (Emmerich 2000). Scalability
transparency for example means that it is completely trans-
parent to the programmer how a middleware system scales
in response to a growing load. In summary, middleware sys-
tems take care of the complexity of handling distributed ob-
jects and provide an abstract and easy to use API to the pro-
grammer.

In order to benefit from application server technology, the
PANDA system builds upon the open-source implementation
JBoss (Stark 2003). The most important components that a
Java 2 Enterprise Edition – J2EE(Sun 1999) based applic-
ation server delivers w.r.t. this work are the following:

• Enterprise Java Beans – EJBsare the objects that are
managed by an application server. All transparency as-
pects apply to them. They are the building blocks of a

distributed J2EE application (Sun 2003).

• The Java Naming and Directory Interface – JNDIis the
directory service that enables location and access trans-
parency. It provides a mapping between Java names and
remote interfaces of Java objects. The access to all EJBs
and other services of the application server is provided
through this interface.

• The Java Messaging Service – JMSenables asynchron-
ous and location transparent communication between Java
components (especially EJBs) beyond virtual machine
boundaries. So this service will be of interest when it
comes to communication between the different compon-
ents of PANDA .

In addition to the features described above, application
server implementations also cover aspects like security,
database access, transaction management etc. They all be-
long to the J2EE specification. However, a full discussion of
their benefits for the PANDA system is beyond the scope of
this paper.

Although the application server technology provides
powerful mechanisms, we still need more support for real-
izing the multiagent system functionalities of the reference
model. Instead of investigating proprietary agent life-cycle
management and communication mechanisms, we decided
to take advantage of the work of the Foundation for Intel-
ligent Physical Agents (FIPA), which has been developing
standards for that area since 1996. The second core com-
ponent which is chosen to implement all agent specific fea-
tures, i.e. to take care of the agent computing capabilities of
the system, is therefore BlueJADE (Cowan & Griss 2002).
BlueJADE integrates the well-known multiagent framework
JADE (Bellifemineet al. 2005) with JBoss. This integra-
tion puts the agent system life cycle under full control of the
application server, that means all distribution capabilities of
the application server apply to the agent societies. Access to
the JADE agent API is provided by BlueJADE’s ServiceM-
Bean interface. It has been selected as the agent computing
platform for PANDA because of the following key features:

It is a FIPA-compliant agent platform and provides a lib-
rary of ready-to-use agent interaction protocols. This en-
ables the PANDA system to interact with other multi-agent-
systems and their services.

It is a distributed system, i.e. its agents can be spread
transparently over several agent containers running on dif-
ferent nodes in a network, including the migration of run-
ning agents between containers. These features can be
exploited for distributed information gathering and (auto-
mated) load balancing. It has to be noted, that this kind
of distribution management is “on top” of the middleware
facilities: agent migration typically anticipates pro-actively
the computation or communication load in a relative abstract
manner, while middleware migration reacts on such load
changes based on very low-level operating system specific
sensors. It makes sense to provide both mechanisms in par-
allel, e.g. to migrate scheduling inspector agents, which are
known to require much computational resources onto dedic-
ated compute servers.

The LEAP extension (Caire 2005) adds support for ubi-

29

quitous computing. Agents are able to run even on mobile
devices such as Java capable cellular phones, PDAs, etc.,
which are all coveted user-interfaces in many application do-
mains.

BlueJADE supports application defined content lan-
guages and ontologies. So a DAML-based content language
can be easily integrated (this will be discussed later).

The system comes with a set of sophisticated graphical
debugging tools. This speeds up the development process
significantly.

The knowledge representation and reasoning facilities
which are used throughout the system constitute the third
core component. During its development, the PANDA frame-
work required an increasing amount of knowledge that rep-
resents planning related concepts (flaw and modification
classes, etc.), the system configuration (which inspectors,
constructors, and strategies to deploy), and the plan gen-
eration process itself (the reference process, including the
backtracking procedure, etc.). Most of this knowledge is
typically represented implicitly through algorithms and data
structures. To make it explicit and modifiable without touch-
ing the system’s implementation, it must be extracted and
represented in a common knowledge base which uses a rep-
resentation formalism that is expressive enough to capture
all modeling aspects on one side and that allows efficient
reasoning on the other side. As a result of this, the system
can be configured generically and that configuration can be
verified on a higher semantic level.

There is a large number of knowledge representation sys-
tems available on the market which promise to meet the
requirements. But since special regard is spent on stand-
ards compliance, theDARPA Agent Markup Language –
DAML (Horrocks, Harmelen, & Patel-Schneider 2001) has
been chosen as the grounding representation formalism for
this task. It combines the key features of description logics
(Baaderet al. 2003) with Internet standards such as XML
or RDF (Manola & Miller 2003) and – even more import-
ant – powerful reasoners and other freely available tools ex-
ist to integrate the language into applications. In our case,
the knowledge encoded in DAML must be made available
to the Java programming language. Therefore, a Java ob-
ject model is necessary that provides mappings in both dir-
ections – from Java to DAML and vice versa. The JENA
API (McBride 2000) from Hewlett Packard delivers an in-
memory object model of a DAML document along with a
rich API to query and manipulate it. By using DAML as the
content language for the BlueJADE agent communication
and also as the language for describing system configura-
tions and communication means, we achieve a homogeneous
representation in the system.

Last, but not least, it is of course necessary to integrate
a suitable description logic system to store the knowledge
and to reason about it. The RACER system (Haarslev &
Möller 2001) has the essential capabilities that are required:
a DAML codec, an efficient reasoning component, and a
knowledge store based on a client-server architecture.

Figure 2: Static system structure of PANDA

The System Structure
Figure 2 shows PANDA ’s static system structure as a UML
deployment diagram. The association arrows indicate which
components communicate with each other. Their labels de-
note the transport protocols being used. BlueJADE is ag-
gregated by JBoss as a (Service-) MBean. It’s functionality
is exposed via theJadeServiceInterface.

The PANDA Client component represents the client ap-
plication that controls the PANDA system. Currently, an
RMI-based communication is used. The PANDA client ob-
tains an interface to the PANDA system by querying JBoss’s
directory service JNDI. But also web-based approaches us-
ing SOAP or HTTP are supported. In this way, JBoss
provides technologies like Web Services and Java Servlets.

Regarding the integration with the JBoss infrastructure,
the PANDA prototype defines three specializations of EJBs
for non-agent system components: the interface to the
RACER system, to the blackboard, and to the agent society
(from outside the system).

Access to the Racer server is provided by theRacerSes-
sionBean. The main reason for integrating the Racer system
via an EJB proxy is that all components that depend on the
Racer system – i.e. EJBs and Agents – are able to access
it transparently. They do not need to know its IP address
or socket number. Furthermore, the RacerSessionBean can
be viewed as generic integration approach for all kinds of
reasoner architectures. The communication between Racer
and the RacerSessionBean is realized with theJRacerclient
API which translates Java method calls into Lisp function
calls. It should be emphasized that each component that ob-
tains a reference to the RacerSessionBean gets its own in-
stance – as usual for SessionBeans. Therefore, queuing of
requests is delegated to the Racer server. In a similar fash-
ion, theBlackboardSessionBeanrepresents a proxy to the
blackboard component.

The PandaSessionBeanrepresents the facade by which
the PANDA client configures and controls the planning pro-
cess. It uses the RacerSessionBean to derive the agents and

30

Inspector1Inspector1

JADE Services

Agent

PandaAgent

Strategy
WorkerAgent

Inspector Constructor Assistant
Strategy

JA
D
E

P
an
d
a

Interaction Protocols
Communication Mgmt.
Life-Cycle Mgmt.

TheStrategy Inspector1 Constructor1 Inspector1Assistant1

Bean Connections
ABox Handling

Sub Cycle Mgmt.
Backtracking

Cycle Control
Worker Implementation

Figure 3: The logical layer structure of the agent framework

their implementations that must be instantiated and creates
them using theJadeServiceInterface. Communication with
the agent framework is done via theJadeBridgeclass of the
BlueJADE package, which creates and accesses agent mes-
sages (see below) in an object-oriented manner.

Basically, two mainclasses of agentsexist in the Blue-
JADE agent container. The first is the class of stand-
ard agents that come with the JADE and BlueJADE soft-
ware packages. They provide the FIPA infrastructure, sev-
eral debugging tools and JADE specific communication ser-
vices. TheGatewayagent’s role is to mediate messages
between JADE agents and components outside the JADE
agent container. It’s counterpart in the EJB container is
the JadeBridge. The Gateway sends and receives stringified
messages in theAgent Communication Language(ACL) via
a TCP/IP socket connection.

Custom agents in the PANDA system, i.e. all agent
types from the reference model, are all derived from the
PandaAgent class which encapsulates low level data
conversion and communication mechanisms. The PANDA
agents form the second class in the JADE agent container.
The PandaAgent class on its part is derived transitively
from the JADE agent base classAgent which provides the
integration into the JADE agent container (cf. Figure 3).

The reference model (Fig. 1) omits the actual means for
calling agents, in a distributed implementation, these re-
mote calls are typically message based. From the agent con-
tainer’s point of view, agents in the JADE agent container
and thePandaSessionBeancommunicate by using messages
encoded in the agent communication languageFIPA-ACL
(FIP 2002b) (in short ACL). ACL is a language based on
speech-act theory, i.e. every message describes an action
that is intended to be carried out with that message sim-
ultaneously (e.g. the request “compute detections”). Such
intentions are calledperformatives. ACL defines formal se-
mantics for performatives (FIP 2002a) that induce basic in-
teraction protocols upon which more complex protocols like
contract nets and auctions are built.

Besides parameters that are necessary for communica-
tion like performative name, participant information, etc., an
ACL message includes parameters that describe the content
that is intended for the receiving participant like thecontent
languagethe content is encoded in, the domain the content
refers to, etc. In order to be qualified for the use as a content

language in an ACL message, a language must meet certain
requirements that are induced by the semantics of the per-
formatives. For example arequestrequires always at least
an action to be delivered with the content. Otherwise the
agent that receives the request does not know what it is re-
quested to do. Furthermore, when an agentinformsanother
agent about the result of an action, the content must contain
the propositions that represent the result. Thus, a content
language must at least provide representations of actions and
propositions, so the agents are able to interact in a meaning-
ful way. The content language that is used by the PANDA
agents is described below.

The Planning Process
Figure 4 gives an overview of the refined model of the plan-
ning process that was taken as the basis for implementa-
tion. The white colored states specify the life-cycle man-
agement of a planning session (initializing the process, start-
ing planning, suspending it, etc.). Each state transition is
labeled with the triggering ACL message and its origin-
ator: sender:performative followed by action or
proposition . Senders can also be described by their
class, e.g.Worker denotes all worker agents. The same
applies to propositions and actions, e.g.Compute denotes
the actionCompute and all sub-actions likeInspect ,
Construct , etc.

The planning process starts in an artificialundefined
state in which all agents are deployed and send agreements
for their initialization process. After that, the strategy in-
forms all agents, that the system is initialized, and this is
where the reference model started with phase 1: The as-
sistants are requested to perform their inference on which
they have to agree. After their processing (leaving the
assisting state), the inspectors are requested to search
for flaws (phase 2), and so on.

Please note, that not all states have been modeled in the
state machine. Most states are abstract in order to reduce
complexity of the state automaton while maintaining a de-
gree of granularity that allows the user to monitor the plan-
ning process. E.g., the statebacktracking summarizes
all possible sub-states that describe the interaction between
each particular worker agent and the strategy.

The refined planning process model has two major im-
provements over the reference model: First, it extends agent
concurrency. The reference planning process model in
Fig. 1, defines the agent classes to execute one after another,
synchronized by phase transitions. In that model, concur-
rency is only allowed within a particular phase. But espe-
cially between phase 2 and 3 such a synchronization is too
strict, because a constructor must wait until the last inspector
has finished, even if a constructor has already received all
flaws it requires for computation. Constructors should there-
fore be able to decide on their own when to start execu-
tion. The refined process model reflects this by a combined
inspecting&constructing state. The constructors’
behavior has therefore been changed from reactive to pro-
active – resulting in a stronger notion of agency.

Second, an enhanced backtracking procedure allows for
the implementation of optimized and more sophisticated

31

Figure 4: The refined PANDA planning process model

reasoning techniques, including worker agents, i.e. assist-
ants, inspectors, and constructors, to be equipped with a state
history or caches, etc. To keep backtracking consistent, the
worker agents now participate in the backtracking process:
they have to synchronize via agreement statements and then
notify the strategy when they are finished (cf. state trans-
itions frombacktracking).

Thus, the agent behavior is extended by a backtracking
mechanism with three core capabilities: First, a synchron-
ized restart of the system must be guaranteed, i.e. a re-
start can only take place, if all worker agents have finished
backtracking. Second, the different granularity of the state
histories of agents working in different sub-cycles is con-
sidered. Assistants can be executed multiple times in a plan-
ning cycle, whereas inspectors and constructors will be ex-
ecuted only once. Therefore, assistants must be backtracked

independently from Inspectors and Constructors. Third, in
order to backtrack the system immediately, the strategy must
be able to interrupt the worker agents’ execution, the agents
therefore perform their computations in a non-blocking way.

In summary, the enhanced mechanisms for concurrency
and backtracking allow the system to benefit from early
fail decisions in terms of an increased performance: Non-
repairable inconsistencies are typically very quickly detec-
ted and processed by constructors.

Ontology-based Components
Like it has been mentioned before, DAML is used as repres-
entation formalism to describe and share knowledge in the
PANDA system, ranging from flaw communication to system
state transitioning. It is one of the emerging standards in the
Semantic Web community for representing and communic-

32

ContentLanguageElement

Action

Proposition

Argument

Compute

Backtrack

Construct

Inspect

Assist

CycleNumber
hasArgumenthasArgument

Backtracked

Failed

Computed

Assisted

Inspected

Constructed

PlanGenerationElement

hasResult

Modification

Expertise

Flaw

xsd:Decimal

hasCycleNumber

hasResult

hasResult

hasResult

xsd:String

hasMessage

Figure 5: The content language ontology

ating knowledge (Horrocks, Harmelen, & Patel-Schneider
2001). It ensures interoperability with third-party systems
like RACER and forms the basis for communicating know-
ledge among agents. Most important, it enables knowledge
to be represented in a uniform, explicit, and declarative man-
ner, so the system becomes more robust, flexible, and main-
tainable.

To be able to use DAML as a content language in ACL
messages (recall the speech act structure), at least actions
and propositions must be able to be represented within
DAML (Schalk et al. 2002). This is sufficient for the needs
of PANDA . Figure 5 shows the ontology that provides the
concepts to enable DAML-based communication. Property
cardinalities have been omitted for clarity.

Actions can have arguments, e.g., the action sub-concept
Backtrack must come with aCycleNumber whose
value is represented as the XML-schema typedecimal .
So an action could be compared with a method signature
without argument order. In PANDA , every argument of
an action is modeled in the ontology in order to give it
a formal semantics. Therefore, in contrast to (Schalket
al. 2002), the argument order does not have to be con-
sidered. Propositions are currently only used to represent
ActionResults . The sub-conceptComputed carries
the PlanGenerationElements that are the results of
the worker agents’ computations, e.g. aConstructed
proposition has anModification element as a result.
The content of an ACL message is represented by instances
of the PANDA system ontology embedded in a DAML-
document. JENA takes care of encoding and decoding the
DAML content of ACL messages. For any content that has
to be sent, its JENA object model is constructed using the
described ontology. After that, the model is serialized and
inserted into the appropriate ACL message. The decoding
of DAML content works exactly the opposite way. The ob-
ject model of the DAML content is constructed by parsing
its serialized representation and can then be queried with the

JENA API.
DAML plays its second key role in the automated con-

figuration of the agent container (Figure 6 shows the un-
derlying ontology). The configuration process is com-
posed of two sub-processes. First, the agents that are part
of the planning process must be instantiated. The Pan-
daSessionBean uses RACER to derive the leaf concepts
of PandaAgent and to determine the implementation as-
signmentsImplementationElements of the Worker-
Agents. In the example of Figure 6, the assigned implement-
ation for theInspector1 agent is an instance of Java class
panda.jade.agent.Inspector1Impl . After being
created, the PANDA agents insert their descriptions into the
ABox of RACER, so RACER keeps track of the deployed
agent instances.

Second, the communication links, viz. the implement-
ation of the triggering functionα, must be established
between the instantiated agents. RACER is used by each
PANDA agent on startup to derive its communication links
to other agents, i.e. from which agents it will receive and to
which agents it has to send messages. This is done by us-
ing the ontology to derive the dependencies between agents
from defined dependencies between the flaws and modifica-
tions: The system ontology specifies which agent instance
implements which type ofInspector , and it does the
same for the constructor agents. RACER derives from that,
which flaw and modification types will be generated by the
agent instances, and if the model includes anα-relationship
between them (solved-by), the agent instances’ commu-
nication channels are linked. Based upon the subsump-
tion capabilities that come with DAML and description lo-
gics, it is even possible to exploit sub-class relationships
betweenPlanGenerationElements (illustrated by the
bold printed concept connections in Fig. 6). An example for
a modification class hierarchy are ordering relation manipu-
lations with sub-classespromotionanddemotion. Regarding
flaws, the system ontology distinguishesprimitiveopen pre-
conditions and those involvingdecomposition axioms(Bi-
undo & Schattenberg 2001).

A knowledge based configuration offers even more bene-
fits: Imagine a less informed configuration mechanism, say,
reading a respective file in XML format, that holds the de-
scriptions on the agents to be loaded and the message links
to be established between them as a representation of the
triggering functionα. Semantic verification can then only
be based on type checking by, e.g., Java class loaders. In the
presented architecture, the system model can be checked on
startup for possible inconsistencies in a verification step of
the planning process in stateinitializing before plan
generation starts (cf. Fig. 4). An example for such an in-
consistency is a constructor that is missing a link to a flaw,
warnings can be issued for flaws and modifications without
implementations of their generating agents, etc.

Related Work
There are two major agent-based planning architectures on
the market. In the O-Plan system (Tate, Drabble, & Kirby
1994), a blackboard is examined by (in our terminology
combined inspector and constructor) modules that write

33

PlanGenerationElement
Modification

Expertise

Flaw

SystemConfigElement

PandaAgent

PandaBean

Controller

Worker

Service

Flaw1

Flaw2

Flaw11

Flaw12

Mod1

Mod2

Inspector

Constructor

Assistant

Exp1

Inspector1

Inspector2

Constructor1

Constructor2

Assistant1

PandaSessionBean

Strategy

ImplementationElement WorkerThread

panda.jade.agent.Inspector1Impl

panda.jade.agent.Inspector2Impl

panda.jade.agent.Constructor1Impl

panda.jade.agent.Constructor2Impl

panda.jade.agent.Assistant1Impl

generates

generates

generates

generates

generatedBy

generatedBy

generatedBy

generates

solvedBy

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

solvedBy solvedBy

Concept

subClassOf
Property

Figure 6: The system configuration ontology

their individually highest ranked flaw on the agenda of a
search controller. This controller selects one agenda entry
and triggers the respective module to perform its highest
prioritized modification. O-Plan has been extended by a
workflow-oriented infrastructure, called the I-X system in-
tegration architecture (Tate 2000). A plug-in mechanism
serves as an interface to various (application tailored) tools.
The planner itself is a monolithic system structure.

The Multi-agent Planning Architecture MPA (Wilkins
& Myers 1998) relies upon a very generic agent-based
approach. It executes an agent society in which desig-
nated coordinators decompose the planning problem into
sub-problems, which are solved by subordinated groups of
agents that may again decompose the problem again. Single
agents return their solutions to their associated managers,
which synthesizes the overall solution of its sub-agents.
Communication of queries and results is based on the highly
abstract KQML formalism. To our knowledge, no (stand-
ardized) middleware functionality has been incorporated.

The SIADEX architecture (de la Asunción et al. 2005)
uses XML-RPCs for building a distributed planning environ-
ment, that is accessible via standardized HTTP and Java pro-
tocols. The architecture decouples a (monolithic) planning
server, knowledge base management, and execution monit-
oring.

In order to address connectivity issues, some planning
systems offer their functionality as web service. Examples
are the CGI-based O-Plan interface (Tate & Dalton 2003)
and the approach in (Tsoumakaset al. 2005), where a plan-

ner uses SOAP for communication and WDSL for present-
ation of the service. Although this view helps in enhancing
the accessibility of planning software, the system (develop-
ment) itself is not directly supported.

A representative for an application framework for build-
ing planning applications is Aspen (Fukunagaet al. 1997).
It provides planning-specific data infrastructure, supportive
inference mechanisms, and algorithmic templates, in order
to facilitate rapid planning application development “out-of-
the-box”. It does not support the development of (standard-
ized) concurrent planning functionality.

None of the above systems or architectures features a flex-
ible, knowledge-based configuration of the plan generation
process.

Conclusions and Future Work
We have presented a novel architecture for planning sys-
tems. It relies on a formal account of hybrid planning,
which allows to decouple flaw detection, modification com-
putation, and search control (Schattenberg, Weigl, & Bi-
undo 2005). Planning capabilities, like HTN and POCL,
can easily be combined by orchestrating respective element-
ary modules via an appropriate strategy module. The imple-
mented system can be employed as a platform to implement
and evaluate various planning methods and strategies. It can
be easily extended to additional functionality, like integrated
scheduling (Schattenberg & Biundo 2002; 2006) and prob-
abilistic reasoning (Biundo, Holzer, & Schattenberg 2004;
2005), without implying changes to the deployed modules

34

– in particular flexible strategy modules – and without jeop-
ardizing system consistency through interfering activity.

This work has investigated three main areas of interest of
the PANDA planning system. The incorporation of higher
semantics by making use of knowledge representation and
inference techniques extends the capabilities of the system
significantly in both functional and non-functional manner.
Verification can be performed on a much higher level, and
the system becomes more flexible and configurable the more
hard-coded knowledge is extracted and described declarat-
ively. With the use of application server technology and
standardized communication protocols, PANDA has laid the
foundation for a distributed system that is able to handle
real-world application scenarios in an adequate manner. Still
much work has to be done to evolve PANDA to a full-
fledged planning web service, but application server tech-
nology seems to provide the appropriate architectural basis.

We plan to deploy this system as a central component in
projects for assistance in telemedicine applications as well
as for personal assistance in ubiquitous computing environ-
ments.

Future versions will not only keep the agents but also the
planning state and agent messages in the system ontology
and ABox in order to extend the verification capabilities
of the system, including multiple ABoxes to enable multi-
session planning. This will make the PANDA system even
more robust w.r.t. corrupted agent behavior by reasoning in
real-time over the dependencies between system states, pos-
sible actions and sent messages that trigger state transitions.
To achieve this, knowledge about communication (i.e. mes-
sage performatives, sender, receivers etc.) and interaction
(i.e. FIPA-protocols and the planning process model) will
be incorporated into the description logics representation of
the system.

By extracting the hard-coded planning process model, de-
scribing it in a declarative manner, and executing it on a gen-
eric engine that uses this description as process template,
changes to the planning process would not involve a change
of code anymore. The process model itself an then be veri-
fied by transforming it into a petri net representation (Naray-
anan & McIlraith 2002).

References
Baader, F.; Calvanese, D.; McGuinness, D.; and Nardi, D.
2003.The Description Logic Handbook. Cambridge.

Bellifemine, F.; Caire, G.; Trucco, T.; and Rimassa, G.
2005. JADE programmer’s guide.http://jade.tilab.
com/doc/programmersguide.pdf .

Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – A preliminary report on combining state
abstraction and HTN planning. In Cesta, A., and Borrajo,
D., eds.,Proceedings of the 6th European Conference on
Planning (ECP-01).

Biundo, S.; Holzer, R.; and Schattenberg, B. 2004. Deal-
ing with continuous resources in AI planning. InProceed-
ings of the 4th International Workshop on Planning and
Scheduling for Space (IWPSS’04), number 228 in WPP,

213–218. ESA-ESOC, Darmstadt, Germany: European
Space Agency Publications Division.

Biundo, S.; Holzer, R.; and Schattenberg, B. 2005. Pro-
ject planning under temporal uncertainty. In Castillo, L.;
Borrajo, D.; Salido, M. A.; and Oddi, A., eds.,Planning,
Scheduling, and Constraint Satisfaction: From Theory to
Practice, volume 117 ofFrontiers in Artificial Intelligence
and Applications. IOS Press. 189–198.

Caire, G. 2005. LEAP users guide.http://jade.
tilab.com/doc/LEAPUserGuide.pdf .

Castillo, L.; Fdez-Olivares, J.; and González, A. 2001.
On the adequacy of hierarchical planning characteristics
for real-world problem solving. In Cesta, A., and Borrajo,
D., eds.,Proceedings of the 6th European Conference on
Planning (ECP-01).

Cowan, D., and Griss, M. 2002. Making software agent
technology available to enterprise applications. Technical
Report HPL-2002-211, Software Technology Laboratory,
HP Laboratories, Palo Alto.http://www.hpl.hp.com/
techreports/2002/HPL-2002-211.pdf .

de la Asuncíon, M.; Castillo, L.; Fdez.-Olivares, J.; Garcı́a-
Pérez, O.; Gonźalez, A.; and Palao, F. 2005. Knowledge
and plan execution management in planning fire fighting
operations. In Castillo, L.; Borrajo, D.; Salido, M. A.; and
Oddi, A., eds.,Planning, Scheduling, and Constraint Satis-
faction: From Theory to Practice, volume 117 ofFrontiers
in Artificial Intelligence and Applications. IOS Press. 159–
168.

Emmerich, W. 2000. Engineering Distributed Objects.
Wiley. ISBN: 0-471-98657-7.

Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An argu-
ment for a hybrid HTN/operator-based approach to plan-
ning. In Steel, S., and Alami, R., eds.,Proceedings of the
4th European Conference on Planning (ECP-97), volume
1348 ofLNAI, 182–194. Springer.

FIPA - Foundation for Intelligent Physical Agents.
2002a. FIPA-ACL Communicative Act Library Specific-
ation. http://www.fipa.org/specs/fipa00037/
SC00037J.pdf .

FIPA - Foundation for Intelligent Physical Agents. 2002b.
FIPA-ACL Message Structure Specification. http://
www.fipa.org/specs/fipa00061/SC00061G.pdf .

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Towards an application framework for automated planning
and scheduling. InProceedings of the 1997 International
Symp. on AI, Robotics & Automation for Space.

Haarslev, V., and M̈oller, R. 2001. Description of the racer
system and its applications. In Goble, C.; McGuinness,
D. L.; Möller, R.; and Patel-Schneider, P. F., eds.,Working
Notes of the 2001 International Description Logics Work-
shop (DL-2001), volume 49 ofCEUR Workshop Proceed-
ings. ISSN 1613-0073.

Horrocks, I.; Harmelen, F.; and Patel-Schneider, P. 2001.
DAML+OIL Specification (March 2001).http://www.
daml.org/2001/03/daml+oil-index.html .

35

Manola, F., and Miller, E. 2003. RDF primer.http:
//www.daml.org/2001/03/daml+oil-index.html .
McBride, B. 2000. Making software agent
technology available to enterprise applications.
http://www-uk.hpl.hp.com/people/bwm/papers/
20001221-paper/ .
Narayanan, S., and McIlraith, S. A. 2002. Simulation,
verification and automated composition of web services.
In WWW ’02: Proceedings of the 11th International Con-
ference on World Wide Web, 77–88. ACM Press. ISBN
1-58113-449-5.
Schalk, M.; Liebig, T.; Illmann, T.; and Kargl, F. 2002.
Combining FIPA ACL with DAML+OIL - a case study. In
Cranefield, S.; Finin, T.; and Willmott, S., eds.,Proceed-
ings of the Second International Workshop on Ontologies
in Agent Systems.
Schattenberg, B., and Biundo, S. 2002. On the identi-
fication and use of hierarchical resources in planning and
scheduling. In Ghallab, M.; Hertzberg, J.; and Traverso, P.,
eds.,Proceedings of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS-02), 263–
272. AAAI.
Schattenberg, B., and Biundo, S. 2006. A unifying frame-
work for hybrid planning and scheduling. In Freksa, C.,
and Kohlhase, M., eds.,KI 2006: Advances in Artificial In-
telligence, Proceedings of the 29th German Conference on
Artificial Intelligence, LNAI. Springer. to appear.
Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hy-
brid planning using flexible strategies. In Furbach, U., ed.,
KI 2005: Advances in Artificial Intelligence, Proceedings
of the 28th German Conference on Artificial Intelligence,
volume 3698 ofLNAI, 258–272. Springer.
Stark, S. 2003.JBoss Administration and Development.
JBoss Group, LLC, second edition. JBoss Version 3.0.5.
Sun Microsystems. 1999.Simplified Guide to the Java 2
Platform, Enterprise Edition. http://java.sun.com/
j2ee/white/j2ee guide.pdf .
Sun Microsystems. 2003.Enterprise JavaBeans 2.1 Doc-
umentation. http://java.sun.com/products/ejb/
docs.html .
Tate, A., and Dalton, J. 2003. O-plan: a common lisp
planning web servide. InProceedings of the International
Lisp Conference, 12–25.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2:
An architecture for command, planning and control. In
Zweben, M., and Fox, M., eds.,Intelligent Scheduling.
Morgan Kaufmann. 213–240.
Tate, A. 2000. Intelligible ai planning. InResearch and De-
velopment in Intelligent Systems XVII, Proceedings of the
ES2000, The 20th British Computer Society Special Group
on Expert Systems International Conference on Knowledge
Based Systems and Applied Artificial Intelligence, 3–16.
Springer.
Tsoumakas, G.; Meditskos, G.; Vrakas, D.; Bassiliades,
N.; and Vlahavas, I. 2005. Web services for adaptive plan-
ning. In Castillo, L.; Borrajo, D.; Salido, M. A.; and Oddi,

A., eds.,Planning, Scheduling, and Constraint Satisfac-
tion: From Theory to Practice, volume 117 ofFrontiers in
Artificial Intelligence and Applications. IOS Press. 159–
168.
Wilkins, D., and Myers, K. 1998. A multiagent planning
architecture. In Simmons, R.; Veloso, M.; and Smith, S.,
eds.,Proceedings of the 4th International Conference on
Artificial Intelligence Planning Systems (AIPS-98), 154–
163. AAAI.

36

The Potted Plant Packing Problem

Towards a practical solution

René Schumann and Jan Behrens

OFFIS, Escherweg 2 26121 Oldenburg Germany
rene.schumann|jan.behrens@offis.de

Abstract. The potted plant packing problem was presented in [1] as
a practical planning problem. The plants are packed on standardised
trollies for transportation, with transport costs being directly dependent
upon the number of trollies used. As a result, the effective packing of
trollies is an important practical problem. Effective packing of trollies
becomes even more important as this sector evolves into a consumer
market.
This paper presents our further work towards a solution of this problem.
We designed a framework algorithm and developed a prototype capable
of solving a simplified version of the problem. The paper at hand focuses
on the algorithms and the prototype that were developed so far.

1 Introduction

The transportation of plants is comparably expensive as they require careful
treatment due to there sensitivity. For standardised transport, potted plants are
loaded on transport trollies (shown in figure 1). The cost of transportation de-
pends on the number of these trollies. In order to minimise transportation costs,
effective packing of trollies is necessary. This becomes even more important with
the ongoing shift towards DIY stores and discounters and their demand for
smaller orders at shorter distribution intervals. Ongoing research at OFFIS also
evaluates strategies for this sector [2].
This paper discusses the potted plant packing problem, which is a special 3D bin
packing problem. It is a practical planning problem one of our costumers asked
us to solve. The problem was first introduced in [1]. So far we worked on a so-
lution that can be integrated into, or supplement the software of our costumer.
The scientific challenge of this problem is not only finding a solution to the
packing problem, but also overcoming the difficulties in formalising the problem
description in an accepted representation. At first we will give a short summery
of the problem statement, followed by a presentation of our steps towards a for-
malisation of the problem. Section 3 thereafter presents the methods developed
so far. The prototype that bases on the implementation of these methods is then
presented in section 4. Finally we discuss further extensions needed for practical
use.

37

2 The packing problem

2.1 Problem statement

The chief task is computing a valid packing instruction for a given transportation
order. Such a packing instruction must contain directives for the exact placement
of each and every plant that is part of the order. Any such directive holds infor-
mation to the plant’s placement on its layer - and each layer’s exact placement
(mounting height) within the trolley. To clarify the problem, a trolley is shown
in figure 1. A number of further constraints and additional rules have to be ob-

Fig. 1. trollies for plants, picture taken from [3]

served as part of the problem. For example; it is allowed to stack plants on a
layer, the placement of layers into trollies has to respect the stability of trollies,
and the total trolley height usually has to be less than the available internal
truck height.

2.2 Towards a formal representation of the packing problem

A first step towards a formal description of the potted plant packing problem
was proposed in [1]. The problem was presented as a 6-tuple according to the
representation of scheduling problems presented in [4]. The 6-tuple consists of

– resources (trollies),
– objects (plants),
– order (defining the quantity of plants to pack),
– hard constraints (e.g. stability),
– soft constraints (contiguously placement of plants of an order item) and
– an objective function (minimising the needed number of trollies).

Another common description for packing problems was presented by Dyckhoff
[5]. Dyckhoff points out a number of typical characteristics of cutting and packing
problems. He advocates the usage of some of these characteristics to identify
similar groups of cutting and packing problems. These characteristics are:

– dimensionality (1, 2, 3, n)

38

– kind of assignment (B, V)
– assortment of large objects (O, I, D)
– assort of small objects (F, M, R, C)

For a detailed discussion of this notation see [5] or [6]. Thus a problem description
of a cutting or packing problem is a 4-tuple, describing the problem in respect
of the mentioned characteristics.
Following Dyckhoff’s description, the potted plant packing problem belongs to
the class 3/V/D/R. This notation encodes that,

– the problem has three relevant dimensions (length, width, height),
– all small objects (plants) have to be placed within a large object (trolley),
– that the large objects (trollies) can have different dimensions, (trolley with

or without add-on modules),
– and that there are many small objects of relatively few different figures.

This typology is widely used to describe the main characteristics of cutting and
packing problems. Currently an improved typology is discussed by [6]. Accord-
ing to [6] the here discussed problem can be seen as a special type of the Three
Dimensional Multiple Bin Size Bin Packing Problem. A current survey about
existing literature of packing and cutting problems can be found in [6], too.
The main disadvantage of these notations is that the problem can not be de-
scribed entirely. Additional constraints have to be added to describe the actual
problem. Nevertheless, these notations are widely in use because they allow a
classification of such problems.

3 Towards a practical solution for the packing problem

As already mentioned, it is quit challenging to describe such a practical planning
problem in terms of a formal model. Even more challenging is solving such a
problem.
As already discussed in [1], the problem can be decomposed, thereby decreasing
its complexity. Our decomposition consists of the following sub-problems:

– Distribution of plants on layers
– Distribution of layers on trollies

As a consequence of this decomposition a computed solution may not be optimal,
but it can be computed faster due to the reduction of complexity. Both sub-
problems will be discussed in more detail in the following subsections. But first
we would like to introduce some techniques used to scale down the search space
and optimise online computation time.

3.1 Scaling down the search space

In the context of this problem, the search space is defined as the number of pos-
sible valid packing instructions. The number of such valid packing instructions

39

is chiefly determined by the number of different plants. It should be obvious
that the search space’s size therefore mainly affects the distribution of plants
on layers. As already stated in the problems formal representation in Dyckhoff’s
notation, there are a large number of small objects with differing dimensions.
Currently we are dealing with at least 1,600 different articles. A diminution of
the number of these potential pack able items - and thereby of the search space -
is desirable. This should have a positive impact on overall performance, simplify
the problem, and make it more tractable. To implement such a diminution, we
decided to build categories of plants with similar dimensions. A category can be
seen as a box or cylinder which can contain different plants with similar dimen-
sions. Figure 2 illustrates this. Building categories necessitate a design decision

Fig. 2. concept of categories

concerning the number of different categories. Reducing the number of categories
implies a decreasing precision, but also reduces the heterogeneity of figures to
pack. This can best be illustrated when looking at the two extremes:

1. There exists only one category, resulting in a maximisation of wasted space
and a minimisation of the number of categories.

2. Each group of plants with identical dimensions has its own category, resulting
in a minimisation of wasted space and a maximisation of the number of
categories.

As explained above, those extremes have a great impact on the search space’s
size. To find the optimal number of categories, we advocate the computation of
the wasted space for a given number of categories and analysing the gradient of
the resulting curve. The graph of such an analysis is shown in figure 3.

3.2 Reducing online computation time

To further reduce online computing time, we decided to use pre-computed pack-
ing patterns stored in a database. A packing pattern represents an entire packed

40

Fig. 3. x-axis: wasted space; y-axis: number of categories

layer. Such a packing pattern is optimal in such a sense that no additional
plant of any category already placed thereon can be added. It has to be stated
that such offline computations can be very time consuming. This is because of
the possibly large number of categories and their potential combinations. Our
experiments started with approximately 350 different plants, mapped into 59
categories. The computation of all possible packing patterns containing plants
of three or less different categories would take several years1 and would have to
evaluate nearly 20 million layers. As a consequence, the complete offline compu-
tation of all possible packing patterns seems impractical. We therefore decided
to compute offline patterns containing plants of one category only. To enable
a self learning system and increase the number of packing patterns over time,
we store all layers computed online into a database. Subsequent computations
will thereby benefit from layers computed before and the patterns derived from
them.

3.3 The packing algorithm’s framework

This section describes the main planning process, which is an extended version
of the algorithm presented by us in [1]. First, all plants of an order are put into
queues, with a dedicated queue for all categories having the same height. Then
all plants of the first none empty queue are added to the orders working set.
If a packing pattern can be applied to a part of the items in the working set,
a corresponding layer is introduced and those elements are removed from the
working set. This is repeated until all queues are empty and no more packing
pattern can be applied. If at this time the working set still contains further
elements, additional layers have to be computed by the online layer packing

1 Estimated 20 years time, based on experiments with our Java prototype run on a
single 2GHz processor with 1GB RAM.

41

1. Ts = ∅ // trolley set

2. Ws = ∅ // working set of packing units

3. Ls = ∅ // layer set

4. Ap = ∅ // applicable packing pattern

5. FOR EACH o ∈ O // where O is an order and o a order item

– P = packing-unit(o)

– q = queueForCategory(category(p ∈ P)) //a Queue for each category

– enqueue(q,p)

6. WHILE NOT(∃q ∈ Q; |q| > 0 OR |Ap| > 0)
– IF (|Ap| > 0)

• p = findBestPattern(Ap)
• Ls = Ls ∪ newEbene(p)

• Ws = Ws − elementsOf(p)

– ELSE

• Ws = Ws ∪ deque(q; q ∈ Q,∀q′ ∈ Q : |q′| > 0, |q| > 0, h(q) ≥ h(q′))

– Ap = findapplicable(Ws)
7. IF |Ws| > 0

– Ls = Ls∪ onlineLayerComputations(Ws)
8. Tr = distributeLayers(Ls)

Algorithm 1: packing frame algorithm

algorithm until all plants have been packed. Thereafter all computed layers are
packed into trollies. The trollies and their layers then form the complete packing
instruction.

3.4 Packing of layers

For our first prototype we simplified the problem described above in such a way
that we only looked at plants distributed in round pots. Therefore the packing
of layers corresponds to a relatively common packing problem; the problem of
packing circles into a rectangular. In the notation of Dyckhoff the problem can
then be formalised as 2/V/I/R. Meaning that

– the problem has two relevant dimensions (length, width),
– all small objects (plants) have to be placed within the large objects (layers),
– large objects are identical in size,
– and there are many small objects with relatively few different dimensions.

The height of a plant can be ignored when only considering its placement as a
circle in a rectangular. It has to be considered of course, as the dimension defining
the layer’s overall height. The overall height of a layer (h(l)) is indicated by the
height of the tallest plant (h(p)) placed thereon. This can be stated as

h(l) = h(pi); pi ∈ elements(l);∀pj : pj ∈ elements(l), h(pi) ≥ h(pj).

The combined height of all layers has a strong influence on the packing instruc-
tion’s quality of the second planning step. As a consequence it is desirable that

42

the summed height of all layers is minimal.

h(L) =
∑

1≤i≤n

h(li)

To minimise h(L), all plants within an order are sorted descending by their
height. The sequence in which plants are added to the working set depends on
this sorting. Because of the order in which plants are then added (and thus
packed) to the working set, layers will generally contain plants of similar height.
Thereby minimising the combined height of all layers.
The problem of packing circles into a rectangular can be divided into two sub-
problems, namely the packing of circles of equal and unequal sizes. These cases
differ in their complexity and are discussed in two separate sections.

Packing of equal circles into a rectangular Finding an optimal solution for
the problem of packing equal circles into a rectangular is a NP-hard task, and in
fact optimal solutions are only known for up to 20 circles (see [7] for instance).
However, heuristics can be designed which compute solutions with sufficient
quality very fast. These heuristics base on a regular placement of circles. We
implemented three regular placement strategies, namely

– grid placement
– placement along the depth
– placement along the width

(a) grid placement, 24 circles (b) placement along the depth 25 circles

(c) placement along the width, 23 circles

Fig. 4. regular circle placements

As one can see in figure 4 the number of placements can differ depending on the
strategy. So far we can not predict which of these will offer the best performance

43

for a given circle and rectangular size. Since these heuristics are very fast, we
therefore always compute all three alternatives and then choose the best.

Packing of unequal circles into a rectangular The placement of circles of
differing sizes into a rectangular is more difficult. Only few publications have yet
dealt with this problem, for example [8], [9], [10] and [11].
We implemented the solutions proposed by [9] and [11]. Our experiments showed
that the solution quality of the simulated annealing approach by [9] was not
acceptable in our context. We were not able to compute solutions of a quality
similar to that presented by the authors. This is most likely due to an erroneous
implementation on our side. As a consequence we implemented the maximum
hole degree algorithm (B1.0) presented in [11]. The main idea of this algorithm
is the subsequent placement of circles into corners. A corner can is defined by
two sides of the rectangular, a rectangular side and a circle, or two circles. The
first two circles are placed by a simple placement strategy. Then for each circle
not placed already within the rectangular, all possible corner placements are
computed. The circle being associated with the placement having the minimal
distance to another circle or side is then chosen. This is repeated until no more
valid corners are found or all elements have been placed. A detailed description of
the algorithm as well as a complexity analysis can be found in [11]. We are pleased
with the performances of this algorithm, expect for such cases where there is a
large number of circles (50 and above). In such cases the number of possible
corner placements grows very fast, therefore drastically increasing computation
time. An example of a layer containing two different types of circles is shown in
figure 5.

Fig. 5. placement computed by the maximum hole degree algorithm

3.5 Trolley packing

The trolley packing algorithm has to answer two key questions.

1. Which layers are mounted into which trolley?
2. Where is each layer placed within the trolley?

44

The first question concerning the distribution of layers onto trollies is a classical
bin packing problem. This can be solved using standard algorithms like next fit
or best fit.
To answer the second question, we have to compute each layer’s correct mounting
point. This has to be done while observing the height and weight constraints of
each layer as well as the trolley’s layout and the maximum height allowed during
transport. Figure 6 illustrates the typical trolley layout. Layers are hooked into
mounting points, which are generally found at 5 cm intervals from a base of 20
cm up to a height of 190 cm. The available height can be increased through the
use of add-on modules up to a total of 225 cm. The placement of layers within
a trolley follows a simple strategy:
The tallest layer is hooked into the topmost mounting point that still ensures the
adherence of all other constraints, especially the maximum allowed height. All
remaining layers are then sorted in ascending order by their weight and inserted
top to bottom into the trolley. This strategy aims at two goals. It tries to

– maximise the usage of available space on the truck and
– lower the centre of gravity to the nethermost point for stability reasons.

Due to the use of add-on modules the layout of a trolley might change, this
requires no change in the method of computation of the layer placement however.

4 The implemented prototype

The strategies and algorithms explained above have been implemented to a large
extend in a prototype. As has partly been mentioned in the section 3.4, the known
main limitations of the prototype are that;

– only plants potted in round pots are considered (this is the majority),
– no stacking of plants is allowed,
– and the stored packing patterns only allow for circles of equal size.

The prototype has been implemented using the Java language and makes use of
the eclipse rich client platform. A screenshot is shown in figure 6. The prototype
allows opening of multiple orders, trollies, and layers. It provides a tree view for
each order, containing a branch for each trolley and hereunder a leaf for each
layer within that trolley. To compute a new packing instruction, the user has to
specify a valid order and then start the computation. The prototype is currently
(May 2006) undergoing field testing and is expected to be developed into a 1.0
release afterwards.

5 Future work

Our main focus is the further improvement of the computed solutions and the
generation of competitive packing instructions. A main advance in that respect
- and the next step planned - will be the implementation of plant stacking. To

45

Fig. 6. Screenshot showing a packed trolley

avoid damage, this requires information on the stackability of each plant as well
as its trunk diameter (see figure 7). The existing algorithms will have to be ex-
tended to permit for stacking of such plants that allow it. Packing algorithms
addressing stacking of circles and respecting non-stackable areas have, to the
best knowledge of the authors, not been addressed in literature so far.
Once stacking will be implemented in our packing algorithms, we are excepting
to compute layers with a much higher quality from a practical perspective. We
then plan to evaluate our solution. Because of the complexity of the problem an
evaluation can only be done by comparison of computed packing instructions
with real packing data gathered on site.

Fig. 7. stacked plants, non-stackable areas marked red

46

As has been mentioned, offline computed packing patterns are used to improve
the computation of packing instructions. We assume that there are going to be
a lot of different packing patterns of different quality, relevance, and practical
usability in terms of frequency of usage. To ensure that the time needed for
pattern retrieval stays in acceptable boundaries, we assume that it is necessary
to cache frequent used patterns. Therefore bookkeeping information about the
usage and quality of packing pattern is believed to be necessary and will also be
a field of future work.
The project’s aim is a software system with a high degree of integration into
our customers systems. To offer him more flexibility it is desirable that he can
modify stored packing patterns manually through a graphical editor.
Most of the plants relevant in our context are potted in round pots. However,
there are exceptions that will ask for further extension or new implementations
of the packing algorithm to enable their handling as well. A subset of this prob-
lem will also be the consideration of trays, which have a rectangular shape and
can hold a fixed number of plants. Current publications mainly focuses on the
packing of either rectangular or circles into a larger rectangular (see [12] for
packing rectangular and e.g. [11] for packing circles). The authors know of no
publication addressing an integrated approach for both, circles and rectangles.
So far we assume that the dimensions of the packed plants are static and inflexi-
ble. This is a simplification and in fact not true for live plants as their dimensions
change during the season. Further research in this field could start with the work
presented in [13] and then try to evaluate whether a more realistic model (includ-
ing dynamic plant dimensions) would indeed improve quality of the instructions
computed.

References

1. Schumann, R., Behrens, J., Siemer, J.: The potted plant packing problem. In Sauer,
J., ed.: 19. Workshop Plan, Scheduling und Konfigurieren / Entwerfen (PUK).
Fachberichte Informatik, Koblenz, Universität Koblenz-Landau Fachbereich Infor-
matik (2005)

2. OFFIS: AmmLog, http://www.ammlog.de. (2006) accessable on 21.04.06.
3. Foko Lübsen und Sohn Internationale Spedition: Hompage Focko Lüpsen & Sohn

GmbH, http://www.luepsen.de/seite01e.htm. (2006) accessable on 21.04.06.
4. Sauer, J.: Wissensbasiertes Lösen von Ablaufplanungsproblemen durch explizite

Heuristiken. DISKI 37. Infix Verlag (1993)
5. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of

Operational Research (EJOR) 44 (1990) 145 – 159
6. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and

packing problems. Working paper no. 24, (Otto von Guericke Universität Magde-
burg) Revision 2006-01-06.

7. Erich Friedman: Erich’s Place, http://www.stetson.edu/ efriedma/cirinsqu/.
(2006) accessable on 19.04.06.

8. George, J.A., George, J.M., Lamar, B.W.: Packing different sized circles into a
rectangular container. European Journal of Operational Research (EJOR) 84
(1995) 693 – 712

47

9. Correia, M.H., Oliveira, J.F., Ferreira, J.S.: Cylinder packing by simulated anneal-
ing. Pesquisa Operacional 20 (2000) 269–286

10. Schöning, U., Toran, J., Thierauf, T., Messner, J., Blubeck, U.: Three algorithms
for packing variable size bobbins. Report, Abt. Theoretische Informatik Universität
Ulm (2002)

11. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for packing unequal
circles into a rectangular container. European Journal of Operational Research
(EJOR) 56 (2005) 539 – 548

12. Scheithauer, G., Terno, J.: The G4-Heuristic for the Pallet Loading Problem.
Journal of the Operational Research Society (JORS) 47 (1996) 511 – 522

13. Albrecht, A., Cheung, S.K., Hui, K.C., Leung, K.S., Wong, C.K.: Optimal Place-
ments of Flexible Objects Part II: A Simulated Annealing Approach for the
Bounded Case. IEEE Transaction on Computers 46 (1997) 905 – 929

48

