
Offering Existing AI Planners as Web Services

Ronny Hartanto
B-IT Bonn-Aachen International Center

for Information Technology
D-53754 St. Augustin

ronny.hartanto@fh-bonn-rhein-sieg.de

Joachim Hertzberg
Institut of Computer Science

University of Osnabrück
D-49069 Osnabrück

hertzberg@informatik.uni-osnabrueck.de

Abstract— Robots or other agents with some
need for action planning functionality may not
insist on running their planners on-board. Web
services technology offers a very flexible way of
connecting planning clients to planning servers,
disregarding the language in which the concrete
planning system is implemented and its operat-
ing system requirements. A planning web service
can then be used locally within an intranet or
globally over the Internet. The paper describes
our implementation.

I. MOTIVATION

Planning is a ubiquitous activity. It comes in
many different forms, differing, for example,
in the level of abstraction and in the future
time window for which it makes sense to plan,
given the limits of domain knowledge and of
previously unknown domain dynamics. Yet,
it makes sense for many agents to deliberate
about their own future course of action or
about actions to be done in coordination with
others. Concrete behavior in time may then
have more sources than just plans designed by
past explicit deliberation, such as reflex-type
behavior, opportunistic action improvisation,
or canned (in the case of artificial agents: pro-
grammed) ways of doing things never put into
question. However, we take it that deliberated
plans are an important information source for
acting in many agents.

The field of Automated Planning [1] has
made quite some progress recently. Flagship
systems and applications have been around
for decades, but as a relatively recent de-
velopment, planning technology has become
widely available, and is has been broad-

ening up from the concentration on clas-
sical situation-based, partial-order, complete-
information, instantaneous-action view to a
richer variety of domain assumptions under
which automatically generated plans work. In
particular, planning and scheduling are finally
being blended, leading to practical systems for
a wealth of applications.

So, planning makes sense for agents, Au-
tomated Planning is a well-advanced field –
then let them plan! In fact, that is exactly what
we intend to do for the case of autonomous
mobile robots as agents. However, a number of
issues need to be solved before mobile robots
will smoothly execute plans generated by your
favorite AI planner and/or scheduler. These
issues are being addressed under the topic
of plan-based robot control [2]. They include
the need to find plan formats suitable for
both automatic plan generation and monitored
autonomous execution, find ways of blending
these plans with reactions needed to respond
to asynchronous events in short (e.g., 10 ms)
control cycle times, to update symbolic world
models based on sensor data, and more.

This paper deals with our practical solution
to a particular problem that we have in plan-
based robot control, but applies to more ar-
tificial agents than robots only. We want our
robots to use existing planners as they are, with
no regard of their programming languages and
operating environments – the choice of planner
should be guided by its functionality rather
than implementation or operating system de-
tails. The planner should run asynchronously
off-board the robot, saving precious on-board

processor capacity. The idea is that the robot
sends its problem description in a format suit-
able for the called planner, and gets back a
plan later, using the remote planning time for
doing whatever it has on its agenda.

Our solution consists of encapsulating plan-
ners as Web Services. This is a rapidly evolv-
ing technology, based on the XML standard
and regular Internet technology. The web ser-
vice provides a solution for working on dif-
ferent operating systems or programming lan-
guages. It uses XML for mapping objects into
text-based data that can be easily transported
over normal web servers by using HTTP.

A planner wrapped as a web service will run
in its original environment and language, so no
porting effort is required. The web service will
get the request over a normal web protocol,
deliver it to the planner and return the result
to the client, which is a robot in our case, but
may be any artificial agent in general. Thus,
the client can be anywhere in the Internet or
intranet, which is connected to the server, on
any operating system. The client may run any
programming language as far as it supports
XML technology. Of course, it needs to be
connected with the net, which is the case for
our robots, who are accessible by WLAN.

The rest of the paper describes the archi-
tecture of the encapsulation and the services
provided in more detail and sketches our future
ideas with it.

II. ARCHITECTURE

A web service, according to w3.org, is “a
software system designed to support inter-
operable machine-to-machine interaction over
a network. It has an interface described
in a machine-processable format (specifically
WSDL). Other systems interact with the Web
service in a manner prescribed by its descrip-
tion using SOAP-messages, typically conveyed
using HTTP with an XML serialization in con-
junction with other Web-related standards.” [3]

What we do here is encapsulating an AI
planner or planners in a web service. The
client request consisting of a planning domain

AI Planner
WebServer

Planning
Request

<?xml v
 <ref:
 <gr

XML

Planning
Response

<?xml v
 <ref:
 <gr

XML

Internet

X

Fig. 1
AI PLANNER WEBSERVICE WITH SEVERAL CLIENTS

and problem description will be sent in XML
format to a web service. The web service
parses these data and calls the planner with
the respective parameters in its own, possibly
proprietary syntax. The results from the plan-
ner will be sent back to the client in an XML
format. Apache-Tomcat is used in this work
for serving the HTTP requests. The SOAP
service is provided by the Apache-Axis, which
is integrated in the Apache-Tomcat server.

Figure 1 sketches this scenario for an AI
planner web service with four clients. The
clients can be embedded agents or normal
notebook or desktop computers. The clients
communicate with the server by sending and
receiving XML documents through HTTP over
Internet. The sketch includes just one server.
In general, there should of course be many of
them – typically including a planner server run
at the planner developer’s site.

Figure 2 gives a close-up of the AI planner
web service as we have designed it. The web
service is programmed in Java, thus can be run
on different platforms. It essentially consists
of several sub-services for handling client re-
quests: AI Planner Manager, Session Manager,
Configuration Manager, and Admin Service.

Operating System

Metric FF Planner

FF Planner

Other Planner

Java VM

HT
TP

 P
ro

to
co

l

AI Planner
Manager

Session
Manager

Configuration
Manager

Admin Service

Fig. 2
AI PLANNER WEBSERVICE ARCHITECTURE. SEE

TEXT FOR DETAILS ON ITS COMPONENTS.

We will now describe them in turn.

A. Planner Manager

The planner manager is the main service. It
provides all functions related to the planning
tasks, such as upload a domain, query planner
list, and solve a problem.

As in a stand-alone planner, domain de-
scriptions can be re-used for different problem
descriptions. Therefore, the client can upload
its domain to the AI planner web service, and
store it there. In case that the domain is big,
it can be divided and submitted to the server
in parts. After getting the last part, the server
will combine everything into a single domain
file. With this feature, the client can have a
collection of domains on the server.

There are two query tasks in this web
service: getPlannerList and get-
DomainList. The getPlannerList
function returns the available installed
planners on the server. getDomainList
returns the uploaded domains from the current
client, who calls this function.

Two possible solve functions, instant-
Solve and solve, are available in this ser-
vice. instantSolve provides a direct so-

lution to the given domain and problem files
in the parameters. It can be called from each
client, without requiring the client to login to
the system. It assumes that the problem to be
solved is simple and can quickly or instantly
be solved by the planner. The solve function
can only be accessed if the client logs in to
the system. The client calls this function with
problem, domain name, and planner name as
parameters. The domain name is one of the
stored domains in the server. The planner name
is in the available planners on the server. It is
possible that the client selects more than one
planner to solve its problem. The server will
give the client a unique transaction ID gener-
ated based on the given parameters values.

Using the transaction ID, the client can
get the solution from the server, once
the planner has terminated. The function
checkSolution serves for asking whether
the planner is already done or not.

B. Session Manager

The web service uses an asynchronous com-
munication between client and server [4].
Thus, a session manager is required for han-
dling and tracking the client activities.

Each client can retrieve its own preferences,
its own domain files and finished solutions
from the server with the help of its session
ID. The session ID is unique, created based
on the client’s username, password and login
time. Before a client can use this web service,
it must login to the server first to get its
session ID. With this ID the server can keep
track of each client. The clients can retrieve
their uploaded domains and solutions from the
previous session. The session ID is only valid
for certain time. If a client has shown no
activity for longer than a maximum time-out
time, its ID will be expired. If it is expired, the
client must login again to get a new session
ID. There is a function to check the status of
a session ID. The session ID is also expired if
the client logs out.

The session manager has two administration
tasks; register new users to the system and

Client Session Manager
login

session ID

Planner Manager

upload Domain

solve Problem

AI Planner

Transaction ID

Solve (domain, problem)

Solution
get Solution

Solution

logout

check session ID

check session ID

checkSolution

check session ID

check session ID

Fig. 3
PLANNER TASK SEQUENCE DIAGRAM

set session time-out. These tasks are available
only for the administrator.

C. Configuration Manager

The configuration manager manages the
server settings, such as planner commands
and client’s directories. The planner command
is used internally within the web service, it
returns the value or command related to a spe-
cific planner. It also manages how the planner
gets the domain and problem on the server;
manages the directories where the client data
are stored, where the domain files and output
files are generated; and finally manages the
temporary directory for the planner.

D. Admin Service

The administrator can do additional tasks
with the admin service. getSystem-
Information returns information about
the server and its properties. A user list can
be fetched by using getUserList. The
active clients or session can be queried using
getSessionList.

E. Sequence Diagram

Figure 3 shows in a sequence diagram how
the AI planner web service serves a client
request. The client first has to login with
its username and password. After successful
login, the client will get an active session ID
from the session manager. If the client wants to

solve a problem of which the domain is not yet
in the server, it must first upload the domain
to the planner manager.

When the required domain is already on
the server, the client can directly call the
solve function on the planner manager with
the domain name, the planner name and the
problem as parameters. The planner manager
will generate a transaction ID for this activity
and return it to the client. The planner manager
then calls the selected planner with the corre-
sponding parameters. The output or solution
from the planner will be stored on a file to be
retrieved later.

The client can call getSolution with its
transaction ID as parameter for retrieving the
resulting plan from the planner manager. The
client could also first call checkSolution
to make sure that the planner has finished com-
puting the solution. Finally, the client would
logout from the system.

The client includes its session ID on
each call, like uploadDomain, solve,
checkSolution and getSolution. The
planner manager consults the session manager
for checking the client’s session ID validity.

III. STATE OF THE IMPLEMENTATION

The AI planner web service has been built in
Java, therefore it is operable on most operating
systems. It has been used on Windows, Linux,
and Mac OS X systems. The web service is in-
stalled on the department of Computer-Science
(Knowlegde-Based System) server in the Uni-
versity of Osnabrück. Currently the server is
behind the firewall, thus it is only accessible
from the University intranet.

Currently, PDDL [5] is the domain descrip-
tion language that is supported. For testing the
system, we have locally installed two planning
systems available on the Web, namely, FF [6]
and Metric FF [7].

The web service server runs on the Apache-
Tomcat server with Axis. Currently the service
has been tested with the Java-client only.

IV. OUTLOOK

Our current implementation could be ex-
tended in a straightforward way in several
directions. Here we mention two of them.

A. Beyond PDDL

Currently our planner web service imple-
mentation only supports PDDL-based plan-
ners. This is of course not necessarily so –
what is required is just some fixed form of
domain description, for which an XML syntax
and a parser from XML to the concrete planner
input syntax would have to be provided.

In the future, additional non-PDDL-based
planners or planners conforming to newly
emerging domain description standards could
also be supported and integrated into this ser-
vice, enhancing not only the zoo of different
planning systems for a common domain de-
scription standard, but the types of planning
that it makes available.

B. Service Brokerage and Load Balancing

As explained in Sec. II, the planners still
could run on their original platforms without
no porting or modification required. In fact, we
do not envision huge planning system servers
providing any planner that is out there as
a central service. Rather, every planner web
server should be lean, typically providing sta-
ble versions of the systems developed on site,
and maybe a few others that are similar in
operation requirements.

Would a planning client then have to know
about all planning web servers that it might
want to use? Of course not! The obvious
solution is to make planning web services
known to other planning web servers, so that
every single server could also work as a broker
for requests that it could not handle because
it either does not run a requested planner or
because it is currently overloaded. So rather
than building huge software repositories, the
situation would look as sketched in Fig. 4. A
client could address any of the four servers for
requesting planning services, and the request

Internet

AI Planner
web-service1

AI Planner
web-service2

AI Planner
web-service3

AI Planner
web-service4

X

X

Planner:
1. FF
2. Metric FF

Planner:
1. FF
2. Metric FF

Planner:
1. BlackBox
2. Graph

Planner:
1. HTN
2. Tal

Fig. 4
FOUR AI PLANNER WEB SERVICES THAT ARE ABLE TO

FUNCTION AS EACH OTHER’S BROKERS AND

PERFORM LOAD BALANCING (SERVERS 1 AND 4).

would be delegated to a server running the
requested planner and with spare capacity.

REFERENCES

[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Au-
tomated Planning: theory and practice. Morgan
Kaufmann Publishers, May 2004.

[2] M. Beetz, J. Hertzberg, M. Ghallab, and M.E. Pol-
lack, editors. Advances in Plan-Based Control of
Robotic Agents, volume 2466 of LNAI. Springer,
Berlin, 2002.

[3] W3C Working Group. Web services architecture,
February 2004.

[4] W3C Recommendation. SOAP version 1.2 part 1:
Messaging framework, June 2003.

[5] Drew McDermott, Malik Ghallab, Adele Howe,
Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. PDDL – the plan-
ning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale University,
Yale Center for Computational Vision and Control,
October 1998.

[6] J. Hoffmann and B. Nebel. The FF planning system:
Fast plan generation through heuristic search. J. AI
Research, 14:253–302, 2001.

[7] Jörg Hoffmann. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state
variables. Journal of Artificial Intelligence Research,
20:291–341, 2003.

	I Motivation
	II Architecture
	II-A Planner Manager
	II-B Session Manager
	II-C Configuration Manager
	II-D Admin Service
	II-E Sequence Diagram

	III State of the Implementation
	IV Outlook
	IV-A Beyond PDDL
	IV-B Service Brokerage and Load Balancing

	References

