
An Integrated Toolkit for Modern Action Planning

Miriam Bützken, Stefan Edelkamp, Abdelaziz Elalaoui, Kenneth Kahl, Rachid
Karmouni, Roman Klinger, Khalid Lahiane, Andrea Matuszewski, Tilman Mehler,

Mohammed Nazih, Michael Nelskamp, and Arne Wiggers

Computer Science Department
University Dortmund

Abstract. In this paper we introduce to the architecture and the abilities of our
design and analysis workbench for modern action planning. The toolkit provides
automated domain analysis tools together with PDDL learning capabilities. New
optimal and suboptimal planners extend state-of-the-art technology. With the
tool, domain experts assist solving hard combinatorial problems. Approximate or
incremental solutions provided by the system are supervised. Intermediate results
are accessible to improve domain modeling and to tune exploration in generating
high quality plans, which, in turn, can be bootstrapped for domain inference.

1 Introduction

The research focus in AI planning shifts towards practical acceptance, with problem
scenarios for transportation and routing, elevator scheduling, space applications, game
playing, avionics, handheld setup, software verification, diagnosis in power networks,
oil pipelining, etc., as indicated by the range of benchmarks [18] currently used in
international planning competitions [30, 1, 28, 10].

Surely pushed by the success of the competitions the efficiency of planning technol-
ogy is continuously raising. Many recent planning systems quickly solve rather com-
plex planning problems. All that is missing are intelligent tools that take over a large
amount of design process to quickly generate planning domain models and to maintain
state-of-the-art planners.

In domain-independent planning all aspects have to be automated. For most existing
planning systems, however, decisions that are inferred automatically can be improved
by only a limited amount user guidance. As a consequence, we have designed a toolkit
that provides options to access and modify the outcome provided by static analyzers, to-
gether with a visualization and animation of computed plans. Moreover, the workbench
includes tools to ease domain modeling, that call and tune existing and new planners
and different wrappers, that divide and analyze the planning process. The workbench
is capable to handle large fragments of current PDDL, including ADL, timed initial
literals and derived predicates.

The exposition starts with the domain analysis, converting uninstantiated PDDL
input files to fully instantiated and annotated PDDL, including the inference of multi-
variate variables domains, as used in many recent planning modules. We then describe
the design capabilities of the system and propose different extensions to optimal and
suboptimal planning. Last but not least, we indicate our approach to visualize plans.



Fig. 1. Architecture of ModPlan.

2 Architecture of the Workbench

The ModPlan workbench is a fully integrated environment for the Windows operating
system, with a simple adaption to Unix/Linux. It has a layered, recursive architecture.
Optional user interaction is available via the top-level GUI, additional shell inputs, ma-
nipulated plan animation (Vega) as well as XML editing (Pollo) and direct file accesses.
It supports an increasing fraction of PDDL expressiveness. While the learning module
operates on simple timed actions and limited ADL expressions; precompilation, plan-
ning, symmetry detection all operate on full PDDL.

Figure 1 gives a rough overview of the architecture for the system. The smilies
highlight, where the user may interact with the system. Domains are either inferred in
a learning module or read from disk. The user can choose among different grounding
options and start planning either from the original or from the instantiated files. Visu-
alization for timed-step plans and animations of plan happenings have been included at
the back-end. As additional options a goal ordering wrapper and an object symmetry
analysis module for generated plans is provided. The two new planners that are featured
are: DurativeFF, a satisficing planner with full PDDL expressiveness based on heuristic
search, and PatternPlan, an optimal propositional planner based on pattern databases.



3 Domain Instantiation and Encoding

PDDL [12] is a an expressive domain description language hierarchy. In Level 1, typed
domain descriptions and ADL expressivity are founded. In Level 2, mixed propositional
and numerical problems can be devised and optimized. In Level 3, temporal planning is
addressed: action generation as in planning is combined with action arrangement as in
scheduling. Recent extensions to PDDL [9] include domain axioms in form of derived
predicates, and restricted use of exogenous events in form of timed initial literals.

PDDL planning tasks usually consist of two different ASCII files: the problem inde-
pendent domain file and the instance specific problem file. In the domain file, parametric
predicates and functions are declared, as well as operators with precondition and effect
lists. In the problem file, we find the definition of objects and their types, the initial
state, the definition of the goal predicate, and the plan object function to be optimized.

Grounding is the process of finding (supersets of) reachable actions, facts and flu-
ents by instantiating operators, predicates and functions with the objects that are spec-
ified in the problem description. Most current planners perform some form of ground-
ing to apply planning state space exploration. We integrated three technologies: trans-
late, the instantiation process that is implemented in the planner Fast-Downward [15],
adl2strips, the domain translation that comes with the planner FF [19], and ground,
the preprocessing result that is implicit in the planner MIPS [6]. While translate and
adl2strips are capable of handling rather complex ADL expression in propositional
planning, ground can deal with metric and durative domain formulations. As adl2strips
provides grounded PDDL Level 1 syntax, with ground we contribute a tool to generate
grounded PDDL, Level 1-3 syntax.

A pure propositional encoding can have efficiency drawbacks during the explo-
ration. A multivariate representation for the atom set is often preferable. In the SAS+

encoding [15], groups of mutually exclusive atoms are generated. This encoding serves
as an optional input for existing planners that can exploit this facility. For the workbench
we choose the multivariate encoding of translate and ground. The output file format for
this domain analysis step is a Lisp-like representation of the set of reachable atoms and
their partitioning into SAS+ variable domains.

4 Symmetry Detection

Unless handled properly, uncaught symmetries cause an explosion in the search space
of the planners. Detecting symmetries fully automatically is not easy, since it links to
the computational hard problem of finding graph isomorphisms. Note that the general
problem is not completely classified. It is expected not to be NP-complete [32]. Some
complexity theoretic insights are: if GI is NP-complete then Σ2 = Π2, GI has an
interactive proof system with two communication rounds, and GI has an interactive
proof system with perfect zero knowledge property.

To explore a state space with respect to a state symmetry, the exploration engine
additionally has to determine a representative element for each equivalence class. In
most existing approaches [31, 27, 13], symmetries are fully specified by the user. Some
planners apply automated object symmetries [11]. Two objects are symmetrical, if they



can be changed in the current state without affecting solvability and optimality in the re-
maining planning problem. Such symmetries appear frequently in benchmark problems.
For object symmetries, there is the additional problem that symmetries may vanish or
reappear during the exploration.

The important observation is that the domain file is transparent to object transposi-
tions, so that symmetry detection is possible only with respect to the current state and
the goal specification. For n objects we have n! possible object permutations. Taking
into account all type information reduces the number of all possible permutation to
n!/(t1! · . . . · tk!). where ti is the number of objects with type i, i ∈ {1, . . . , k}. To
reduce the number of potential symmetries to a tractable size, we might further restrict
symmetries to object transpositions, for which we have at most n(n− 1)/2 candidates.
Including type information this number further reduces to

∑k
i=1 ti(ti − 1)/2. For for-

ward chaining planners we can reduce this set of possible object symmetries to the ones
that are valid in the goal. Symmetry detection in our workbench is based on plan hap-
penings. The systems induces a sequence of object symmetries, while the user may add
complex symmetries that the system connot infer.

5 Goal Ordering and Planner Wrapping

Goal ordering is an essential part of accelerating solution finding in larger planning
problems. It yields a goal agenda [23] denoting, in which order goal predicates and
conditions should be established. It consists of a sequence of goals atoms G1, . . . , Gk

with Gi ⊂ Gi+1, i ∈ {1, . . . , k − 1}. Using a goal ordering, the planning process
for any Planner can be reduced as follows. Set I1 = I and Ii+1 = Planner(Ii,Gi),
i ∈ {0, . . . , k− 1}. It has laid the basis of the dramatic impact of constraint partitioned
problem solving in SGPlan [4]. The idea shares similarities with macro problem solv-
ing [24], in which operator sequences are learned to be retrieved for sequentialized goal
satisfaction. Note that some goal orderings can yield fairly long plans [26].

We have implemented an approximation �h of �r as an individual static analysis
option. The algorithm prompts the outcome of this phase to the user so that he can refine
the induced goal agenda. If the agenda is fixed, a sequence of PDDL files is generated
wrapping any selected planning module. As finding the best goal ordering is hard, we
leave it to the domain expert to adjust the approximated one. The inference Ii+1 given
Ii is transparent to the expert, as it simulates plan execution within the validator VAL
(cf. section on plan validation and visualization). Using our extension to flush state
sequences according to plan happenings, we apply VAL to Ii and write the result Ii+1

together with goal Gi+1 back to disk.

6 Operator Dependency and Parallel Plans

There are two main optimization metrics in planning, the plan length (number of ac-
tions) and its makespan (minimum parallel execution time). For propositional planning,
each operator is asserted to a duration of 1, so that the latter corresponds to the minimal
parallel plan length. To express parallel plans, a mutex relation of operators has to be



provided, which in the case of metric planning, naturally extends to the standard mu-
tex relation for STRIPS. It additionally includes conflicts between numerical variables.
Two grounded operators are mutex, if one of the following three conditions holds:

1. The precondition list of one operator has a non-empty intersection with the add or
delete lists of the other one.

2. The head of a numerical modifier of one operator is contained in some condition of
the other one.

3. The head of the numerical modifier of one operator is contained in the body of the
modifier of the other one.

For temporal planning with start, invariant and end modalities, we have eight dif-
ferent mutexes, i.e. start/start, start/invariant, start/end, invariant/start, invariant/end,
end/start, end/invariant and end/end. If there is more than one conflict for one operator
pair, we have to compute the maximum value derived for the individual conflicts.

The semantics of operator duration in PDDL2.1 demands a slack of ε time steps
between any two happenings that are dependent. The default value for ε is 0.01. The
idea is that if a proposition or a numerical quantity is accessed by different actions,
some time for resolving has to pass.

Optimizing of plans without precedence ordering is involved [2], since computing
the makespan for a set of operators is NP-complete. However, given a sequence of
operators in a plan, a precedence ordering among them, an optimal parallel plan that
respects the given timing constraints, is polynomially solvable. Moreover, with critical
path scheduling (PERT) such a plan can be computed in optimal time [6]. The approach
extends to timed initial literals and action execution time windows. Operator depen-
dency induces a partial ordering in a sequence of actions. In order to derive posterior
schedules of sequential plans in temporal planning, pairwise dependencies are precom-
puted and made accessible to the user with each computed plan. He may add or delete
precedence constraints before scheduling is performed.

7 Domain Inference

Learning PDDL domain specifications from plan traces without any domain expert
knowledge is a computationally challenging and practically almost infeasible task. To
infer operators within a PDDL domain description, the PDDL inference mechanism
needs supervision of the user. We newly implemented a supervised learning algorithm
to interactively infer the PDDL domain description.

We assume that a domain expert tries to infer a valid domain description from a
set of operators that form a valid plan. This plan can be generated in a previous run of
a planner. If we start from scratch, an initial sequence of operators has to be provided
manually. The additional inputs of the algorithm are the prefixes of domain and problem
file, namely the declaration of objects, and the set of predicates. If not already present,
object type information may interactively be attached.

Given the set of operators in a valid plan (cf. Figure 2), the designer is confronted
with choice boxes on how the set of preconditions and effects of an operator to be in-
ferred are composed (cf. Figures 3). The supervised PDDL learning mechanism selects



Fig. 2. Input for the PDDL learning task.

Fig. 3. Supervised input of action preconditions.

the operator to infer next and steadily reduces the set of options until a domain model
has been established. For long plans, the inference task is almost fully automatic. The
learning algorithm underneath provides an improved implementation of the Opmaker
algorithm [29]. One of the distinctive features is the option to attach durations to actions
and to allow incremental learning, as the output of a planner can be used as input for
another inference step.

8 Suboptimal and Optimal Planning

As the intermediate results produced by the grounding procedures are valid PDDL files,
any planner can be used as a back-end solver. To push the development of planning
technology and to highlight the applicability of our knowledge engineering tool, we
enlarged the set of existing planners by two different contributions: one optimal propo-
sitional planner and one suboptimal metric and temporal solving module. In our work-
bench, we have included an interface to both planners.



Fig. 4. Inferred domain description.

Current STRIPS planners are diverse in structure. While most suboptimal plan-
ners use heuristic and/or local search [4], optimal planners range from satisfiability
solving [21], planning graph approaches [3] to integer programming [22] and heursitic
search [14]. With Pattern-Plan we contribute an optimal (either symbolic or explicit)
pattern database planner.

In planning with pattern databases [5], the automated selection of possible abstrac-
tion functions to yield informative pattern databases is a hard combinatorial task. This
is especially true for the creation of disjoint databases [25], in which operator pro-
jections are void in all but one abstraction. In planning, pattern database abstraction
are most effective if they consider SAS+ groups in common. There are different bin-
packing approximation algorithms [5] that infer a partitioning of variable groups before
constructing the databases. The maximum size of a pattern database is bounded by
the multiplication of the cardinalities of the selected variable domains. We are currently
working at a genetic algorithm to improve the first partition of groups. Moreover, we al-
low user guidance to refine the approximated, disjoint partitioning into planning pattern
databases as proposed in the inference module is helpful. We allow these interactions
in an XML front end.

For metric planning, we implemented the PERT scheduling approach [6] on top
of Metric-FF [17] to generate parallel plans. We use posterior scheduling for complete
plans as well as for partial and relaxed ones. As temporal planning leads to plan sched-
ules rather than plan sequences, we have successfully lifted Metric-FF to Durative-FF,
a new planner that is capable of parsing PDDL2.1 Level 3 and to apply PERT schedul-
ing on top of the set of generated plans. First results on the set of competition planning
benchmarks are promising. As the approach generalized to timed initial literals in form
of action execution time windows [7], we currently include expressiveness with this
respect. By the choice of the underlying planner, however, generalizing the relaxed
planning heuristic to non-linear tasks [8] is involved.



9 Plan Validation and Visualization

For plan validation we have included VAL [20], as provided by the Strathclyde plan-
ning group. The main capabilty of VAL is the simulation, i.e. the execution of almost
any plan in PDDL syntax. It has recently been extended to capture continous effects,
exogenous events and processes.

For plan visualization we integrated the animation system Vega [16] to the work-
bench, allowing a magnified view to an arbitrary part of the plan. Vega itself is imple-
mented as a Client-Server architecture that runs an annotated algorithm on the server
side to be visualized on the client side in a Java frontend. Annotation are visualization
requests that (minorly) extend the existing source code by (simple) commands like send
point(x, y).

In the system, visualization objects can be associated with hierarchical structured
identifiers. The client is used both as the user front-end and the visualization engine.
Thus, it allows server and algorithm selection, input of data, running and stopping algo-
rithms, and customization of the visualization. It can be used to manipulate scenes with
hierarchically named objects, view algorithm lists at the server and display algorithm
information, control the algorithm execution using a VCR-like panel or the execution
browser, adjust view attributes directly or by using the object browser. It can display
several algorithms simultaneously in multiple scenes and open different views for a
single scene, load and save single scenes, complete runs, and attribute lists and export
scenes in xfig or gif format.

Vega allows both on-line and off-line presentations. The main purpose of the server
is to make algorithms accessible through TCP/IP. The server is able to receive com-
mands from multiple clients at the same time. It allows the client to choose from the
list of available algorithms, to retrieve information about the algorithm, to specify in-
put data, to start it and to receive output data. The server maintains a list of installed
algorithms. This list may be changed without stopping and restarting the server.

Gantt charts are plots for temporal plans, in which a horizontal open oblong is
drawn against each activity indicating estimated duration. To access precise e.g. tem-
poral information on the operators representatives can selected with the mouse. Our
visualization module depicts the Gantt chart of plans in competition format. An exam-
ple is provided in Figure 5. As the essence of the task is translating temporal operators
into rectangles and associated text labels we compile planner results into Vega scenes.

Domain-specific visualization is more challenging. Based on flushing sequential op-
erator trails together with their corresponding state sequence, we have written instance-
independent visualizations for many competition domains. Propositional atoms are il-
lustrated by showing or hiding an image at a certain location, while numerical quantities
such as fuel are expressed by using scalable graphical items. The according figures for
displaying domain objects are collected with an image web search engine. Previously,
the visualizer worked in cooperation with a specialized planner extension that wrote
(sequential) plans together with associated state information to disk. In the workbench,
we additionally exploit VAL’s capabilities to enable the animation of parallel and tem-
poral plan execution. For this purpose, we extended the validator to flush a sequence of
states at each happening together with its time stamp in form a Vega run to disk.



Fig. 5. Visualisation of a plan in Gantt chart format.

10 Conclusion

With ModPlan we have implemented an integrated environment including domain mod-
eling, static analyzes, plan finding, plan validation, and plan visualization. Except for
PDDL inference, we allow but do not rely on expert knowledge. We simplified the do-
main design by offering an interactive operator learning module. Static analyzers yield
grounded and annotated PDDL, to be exploited by different plan engines. Additionally,
we have contributed two planners: a sub-optimal planner that covers a large fraction of
PDDL2.2, and an optimal planner for propositional problems with SAS+ annotations.

There are many other challenges that can be made accessible for improved approx-
imation results in domain-independent planning. For example, we have not realized the
usage of control rules to prune exploration especially in forward-chaining planners.

Acknowledgments The work is supported by DFG in projects Ed 74/2 and 74/3.

References

1. F. Bacchus. The AIPS’00 planning competition. 22(3):47–56, 2001.
2. C. Bäckström. Computational aspects of reordering plans. Journal of Artificial Intelligence

Research, 9:99–137, 1998.
3. A. Blum and M. L. Furst. Fast planning through planning graph analysis. In IJCAI, pages

1636–1642, 1995.
4. Y. Chen and B. W. Wah. Subgoal partitioning and resolution in planning. In Proceedings of

the International Planning Competition, 2004.
5. S. Edelkamp. Planning with pattern databases. In ECP, pages 13–24, 2001.
6. S. Edelkamp. Taming numbers and durations in the model checking integrated planning

system. Journal of Artificial Research, 20:195–238, 2003.



7. S. Edelkamp. Extended critical paths in temporal planning. In Proceedings ICAPS-Workshop
on Integrating Planning Into Scheduling, 2004.

8. S. Edelkamp. Generalizing the relaxed planning heuristic to non-linear tasks. In KI, 2004.
198–212.

9. S. Edelkamp and J. Hoffmann. PDDL2.2: The language for the classical part of the 4th
international planning competition. Technical Report 195, University of Freiburg, 2004.

10. S. Edelkamp, J. Hoffmann, M. Littman, and H. Younes, editors. Proceedings of the Interna-
tional Planning Competition. JPL, 2004.

11. M. Fox and D. Long. The detection and exploration of symmetry in planning problems. In
IJCAI, pages 956–961, 1999.

12. M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 2003.

13. E. Guéré and R. Alami. One action is enough to plan. In IJCAI, 2001.
14. P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In AIPS, pages 140–

149, 2000.
15. M. Helmert. A planning heuristic based on causal graph analysis. In ICAPS, pages 161–170,

2004.
16. C. A. Hipke. Distributed Visualization of Geometric Algorithms. PhD thesis, University of

Freiburg, 2000.
17. J. Hoffmann. The Metric FF planning system: Translating “Ignoring the delete list” to nu-

merical state variables. Journal of Artificial Intelligence Research, 20:291–341, 2003.
18. J. Hoffmann, R. Englert, F. Liporace, S. Thiebaux, and S. Trüg. Towards realistic benchmarks

for planning: the domains used in the classical part of IPC-4. Journal of Artificial Intelligence
Research, 2005. Submitted.

19. J. Hoffmann and B. Nebel. Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253–302, 2001.

20. R. Howey and D. Long. VAL’s progress: The automatic validation tool for PDDL2.1 used
in the international planning competition. In ICAPS-workshop on the Competition, 2003.

21. H. Kautz and B. Selman. Pushing the envelope: Planning propositional logic, and stochastic
search. In AAAI, pages 1194–1201, 1996.

22. H. Kautz and J. Walser. State-space planning by integer optimization. In AAAI, 1999.
23. J. Koehler and J. Hoffmann. On reasonable and forced goal orderings and their use in an

agenda-driven planning algorithm. Journal of Artificial Intelligence Research, 12:338–386,
2000.

24. R. E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence, 26:35–77,
1985.

25. R. E. Korf and A. Felner. Chips Challenging Champions: Games, Computers and Artificial
Intelligence, chapter Disjoint Pattern Database Heuristics, pages 13–26. Elsevier, 2002.

26. F. Lin. System R. AI-Magazine, pages 73–76, 2001.
27. A. Lluch-Lafuente. Symmetry reduction and heuristic search for error detection in model

checking. In MoChArt, 2003.
28. D. Long and M. Fox. The 3rd international planning competition: Overview and results.

Journal of Artificial Intelligence Research, 20, 2003. Special issue on the 3rd International
Planning Competition.

29. T. L. McCluskey, N. E. Richardson, and R. M. Simpson. An interactive method for inducing
operator descriptions. In AIPS, 2002.

30. D. McDermott. The 1998 AI Planning Competition. AI Magazine, 21(2), 2000.
31. J. Rintanen. Symmetry reduction for SAT representations of transition systems. In ICAPS,

2003.
32. I. Wegener. Komplexitätstheorie. Springer, 2003. (in German).


