
Modeling in an Architectural Variability Description
Language1

Theo Dirk Meijler1, Silvie Schoenmaker1, Egbert de Ruijter2

1 University of Groningen, Department of Mathematics and Computer Science, PO Box 800,
NL9700AV Groningen, The Netherlands

t.d.meijler@cs.rug.nl, silvie@home.nl
2 Thales Naval Nederland, PO Box 42, NL7550 GD Hengelo Ov. The Netherlands

egbert.deruijter@nl.thalesgroup.com

Abstract. In order to handle the large amount of variability in product families,
automated product derivation support is desirable. To make automated product
derivation possible one important ingredient is that the solution domain should
be formalized. This should allow the formal description of the variability and
the formal description of the choices. Such a formalization should be presented
to the application engineer in a way that gives insight in the functioning of the
system. To give insight in the structure and functioning of a software system at
a high-level of abstraction, an architectural description is often used. Lately, so-
called ADL’s (Architectural Description Languages) have been introduced for
allowing clear architectural descriptions with well-defined semantics. It is the
contribution of this paper to provide an ADL extension called AVDL (Architec-
tural Variability Description Language), which allows formalizing variability at
the architectural level. Relevant aspects of AVDL are described in this paper,
and the promising results of applying AVDL to two industrial based examples
are presented.

1 Introduction

Product families are a means for large-scale reuse of software, consisting of a reus-
able common software architecture and reusable components
[BOSCH00][CLEME02]. They allow distributing the investment of building large
complex systems over customers and are therefore widely used in industry
[NORTH02]. In order to serve various customers, product families have a large “in-
built” variability, e.g. different variants of components that can be used and possible
variations in their implementation. This large variability may however again lead to
problems in efficiently realizing specific products for specific customers, thus ham-
pering the efficiency gain of large-scale reuse. One reason is that there may be so
much variability that knowing which variant(s) to fill in for realizing which feature in

1 This work was performed in the context of an IST programme, project ConIPF: Configuration

of Industrial Product Families

mailto:t.d.meijler@cs.rug.nl
mailto:silvie@home.nl

the product is difficult to find out. Another reason is that a chosen variant may be dif-
ficult to implement.

We assert therefore that in order to make product derivation in the context of soft-
ware product families more efficient, support for the application engineer is needed.
In the European project ConIPF1 such product support is developed.

ConIPF product derivation support is based on Knowledge based configuration as
known in AI [STUMP97]. The knowledge firstly encompasses problem space vari-
ability, i.e., the possible choices the application engineer has to describe the product
in terms of the features that the product must deliver. Here a feature is understood to
describe ”prominent or distinctive user-visible aspects, quality or characteristics of a
software system or systems” [KANG90]. The knowledge also encompasses solution
space variability, including e.g., possible variants of components. It furthermore en-
compasses how choices in the problem space are mapped to the solution space. Thus,
using this knowledge, support can be given to the application engineer to correctly
configure in the problem space and map this to a solution configuration. The knowl-
edge finally encompasses how a solution space configuration can be mapped to a final
realization, in code extensions or parameterization of artifacts.

Thus in the proposed product derivation support, both the formalized description of
the problem space and of the solution space and of the mapping between the two is
needed. In this paper we will focus on the formal description of the variability in the
solution space, i.e., the description of possible solutions in the context of a software
product family. One important requirement for such a description is that a mapping
must be possible between a solution configuration to real implementation artifacts,
such as files, settings etc. One other requirement is that both the formal description of
the possible solutions and the configuration should make sense to the application en-
gineer and give insight in the functioning of the system.

Typically engineers describe and develop their solution at relatively separate ab-
straction levels or aspects, e.g., the highest abstraction level of components cooperat-
ing in a certain structure, which is called the architecture. The next abstraction level is
(in an object-oriented approach) the used classes for realizing such components. Other
abstraction levels may be the code level for realizing certain code/ methods within
classes. Furthermore, the run-time parameterization of components and objects maybe
another aspect layer of the solution formalization and modeling. The main question to
be answered in this paper is how to formalize possible solutions and the correspond-
ing configuration at the architectural level.

In current literature much attention has been given to modeling architecture. A
need for a modeling notation for architectures has been established that has the fol-
lowing properties: [CLBBG02][MEDVI00]:

• Clear and simple for communicating the high-level functioning of a system
with stakeholders,

• Useful for estimating certain quality attributes, such as performance, avail-
ability, maintainability,

• Clear semantics, we note that this becomes especially relevant when it is
necessary to map an architecture configuration to an implementation,

From this need so-called architectural description languages have come up
[MEDVI00]. Currently, some of these notations are also input to the UML2.0 stan-

dardization effort. Mainly, these notations include components, connectors, interfaces
as will be detailed later on in this paper.

However, these approaches in general are not directed towards describing variabil-
ity of possible products in the context of a product family. In order to hold-on to the
positive aspects as mentioned above, an extension to ADL formalisms for describing
the architectural variability in the context of a product family is needed. It is the con-
tribution of this paper to provide an ADL extension called AVDL (Architectural
Variability Description Language) for formalizing the solution space of a product
family at the architectural level of abstraction.

The remainder of this paper is structured as follows:
In Section 2 we introduce (abstracted) examples obtained through our industrial

partners. In Section 3 we describe the main requirements for formalizing architectural
variability, which includes our basic assumption that we use the main elements from
an ADL. In Section 4 we introduce different aspects and possibilities of AVDL. In
Section 5 we give results of a preliminary validation of AVDL by discussing how the
examples described in Section 2 are solved using the approach. In Section 5 we dis-
cuss related work and in Section 6 we conclude.

2 Examples

This work has been tested preliminarily on basis of two examples of architectural
variability as obtained from Robert Bosch GMBH Germany and Thales Naval Neder-
land The Netherlands. At Bosch we especially examine software for cars and trucks,
so-called automotive systems. We have used a conceivable (but not realized) example
that came up during our discussions with them. A Combat Management System
(CMS) originating from Thales serves as a basis for our second case. Such a CMS
contains subsystems that control sensor (e.g. radars) and actuators (e.g. guns) and in-
teracts with human operators; also contained are the required connections between
those subsystems. These cases also serve as basis for the examples used in this paper.
However, these examples have been transformed in order to remove business critical
information and simplified to focus at essentials.

Our examples correspond with two different kinds of variability that can occur:
1. Variability w.r.t variants of components and their cooperation.

Description: In an architecture the high-level cooperation of components is
described. In these cooperation components have different functions. A compo-
nent serving a certain function can have several variants. Certain variants of one
functional component may also depend on certain variants of an other functional
component.

Example: In the Bosch example, a motor control component and a vehicle
control component cooperate. Three variants of motor control are of interest for
this example: Gasoline, Diesel and Turbo-Diesel. For vehicle control, two rele-
vant variants are vehicle control with ambient air pressure measurement and ve-
hicle control without ambient air pressure measurement. When the motor is a
Turbo Diesel, the motor control needs ambient air pressure measurement infor-

mation which it should get from the vehicle control. The other motor controls do
not need this information. We want to be able to describe this variability.
2. Variability w.r.t. the sub-architecture of a used component

Description: In an architecture model also the internal architecture of a com-
ponent can be of interest. Also in this internal architecture variability can occur.

Example: In the Thales example a track management system keeps track of
the position of an incoming (possibly dangerous) projectile or airplane. Within
that component, two variants of a tracking system can be chosen and two variants
of data logging system.

In the two examples there is furthermore a difference in the way the communica-
tion between the components is realized. At Bosch, the communication between com-
ponents is based on direct point-to-point messages. At Thales, components communi-
cate through a so-called bus, on which a publisher – subscriber pattern has been
realized: Components can publish information, while other components can subscribe
to specific information.

3 Requirements for formalizing architectural variability

As already described in Section 1, AVDL extends on the modeling of architectures as
given by typical ADL’s. An architecture modeled in an ADL has the following advan-
tages:

• Ease of communication with stakeholders about functioning,
• Estimation of quality attributes,
• Well-defined semantics

We note that a well-defined semantics is especially relevant since in product deri-
vation support it must be possible to generate a realization from a specific configura-
tion.

In the following, we shall define a set of requirements that AVDL must comply to:

1. Domain independence. We require that the language is domain independent
meaning that the same language can be used in different kinds of product
families. For example it should be able to handle the differences in the way
communication is realized in the two examples.

2. Clear Graphical Notation. A graphical notation for architectural variability
is required that can easily be communicated to stakeholders.

3. Location of Variability. It must be explicit where variability is in the archi-
tecture. We call this a variation point. For example it must be expressible
where in the architecture variants such as Gasoline, Diesel and Turbo Diesel
motor control can be chosen.

4. Different kinds of variation points. According to [BABA01], there are dif-
ferent kinds of variation points that must be supported:

a. Optional: There exists exactly one component that could be in-
cluded in the product.

b. Alternative: There exist multiple components and one of them must
be included.

c. Set of alternatives: There exist multiple components and at least one
of them must be included.

d. Optional alternative: There exist multiple components and one of
them could be included.

e. Optional set of alternatives: There exist multiple components and a
collection of them could be included.

5. Explicit Possible Choices. It must be expressible what the alternatives are.
For instance we want to express that the developer has the choice between
the Gasoline, Diesel and Turbo Diesel motor control at a certain variation
point.

6. Dependencies between components. Certain components depend on each
other to function (e.g., the turbo Diesel component depends on the motor
control with pressure measurement to function). Certain components may
not be able to function together. Such dependencies between components
must be expressible.

7. Expressing a Choice. It must be possible to be able to express the choices of
the product developer, so the language must not only allow expressing the
variability of the architecture but expressing that choice in the architecture.
In our example, next to expressing the variability in terms of the variants
Gasoline, Diesel, and Turbo Diesel, it must be possible to represent a spe-
cific choice, e.g. Gasoline.

8. Backtracking. When a choice has been made, this must not mean that the
variability is no longer there: the choice can still be reconsidered, see how-
ever the requirement on binding times in point 9 which gives certain restric-
tions on this. Thus, variability in the choice of components such as Gasoline,
Diesel, and Turbo Diesel is not removed when the choice for Gasoline is
made, the developer can still reconsider and choose Diesel. These two as-
pects: variability and the current choice are together part of the same archi-
tecture description. Thus, the way variability is modeled and choices are rep-
resented should take into account that backtracking must remain possible.

9. Taking into account Binding Times. Binding times must be taken into ac-
count in variability modeling. In literature, the development process of
choosing variants within product derivation consists of various steps: Re-
quirements Collection, Architectural Design, Detailed Design, Implementa-
tion, Compilation, Linking, Start-up, Run-time [GURP]. When we focus on
variability in architecture, in the context of formalized product derivation
support process, at the following points in time (so-called binding times) ar-
chitectural choices can be made: architectural design2, compile time, link-
time, run-time. Typically at architectural design functional choices between
components are made (as in our example, the choice between Gasoline, Die-
sel and Turbo Diesel) while at compile time choices between implementa-
tions of components can be made, realized for example via a compilation
switch. Run-time, certain components may still be added to a system, e.g., by

2 Note that normally architectural design would mean here making the full design of the archi-

tecture. Within product derivation support for a product family, only a limited set of possi-
bilities are left.

downloading a component to be used in a browser. Summarizing, it must be
taken into account that in a certain phases of the derivation process certain
variability can no longer be offered since the derivation phase is past the
(latest) binding time of the corresponding variation point.

4 Modeling Architectural Variability in AVDL

In this section we will introduce the main elements of AVDL. Each subsection will
contain one small example and in this way introduces a certain topic.

4.1 Basic Elements

In Fig. 1 an example of a simple architecture description is given, describing the pos-
sible cooperation of a component X and a component Y over a publish-subscribe con-
nection. This is an example without variability.

Bus:TBus

X:Com1 Y:Com2

Yout
Xin

Bout Bin

Legend:

X:Com1

Xin
Yout

Bout

Bus:TBus

Component
X of type
Com1

Interfaces
Input Xin
Output Yout

Role of name
Bout

Connector Bus
of type TBus

Link

Fig. 1. A simple architecture (no variability). Output interface Yout of component Y is linked
to role Bin, input interface Xin of component X is linked to Bout of connector Bus. Given that
(not shown) Bin and Bout are the publish and subscribe role of Bus respectively, Y and X can
communicate in this way.

In this description variability is not yet used and thus the main elements in the fig-
ure are those that are common to most ADL’s [MEDVI00]: Component, connector,
interface, role, link. As in other ADL’s the meaning of this is the following, see for
details [MEDVI00]:

Component: A component is the main element of computation.
Interface: A component can have both provided and required interfaces.

Connector: A connector describes the explicit medium of communication between
components, it makes explicit that two components can cooperate.

Link and role: The interfaces of components can be linked to a role of a connec-
tor. A connector can have different kinds of roles, e.g. a role on which input of the
communication is expected or one on which output of the communication is expected.

In contrast to some ADL’s for example [OMMER02], we enforce that the commu-
nication between components is realized through a connector. As a result of this, the
well-defined semantics of the architectural description can be upheld in the usage
within different domains, as required by requirement 1. For different kinds of connec-
tors (such as bus or point-to-point message passing) the cooperation between compo-
nents as modeled through the connector and the links to that connector gets a different
meaning and realization.

One other element we adopt from most ADL’s is that a component itself can again
have an architecture (possibly again with variability) with subcomponents. The rela-
tion between a component and its subcomponents does not need to be modeled with
connectors. A link between an interface of the (outer-)component and an interface of
a subcomponent has a default mapping semantics. See further Section 4.4 where
components with an inner variable architecture are shown.

4.2 Variation points

In this subsection we explain some elements of how variability is modeled and used,
see Fig. 2. In Fig. 2, the principle of an “alternative” variation point is modeled, see
Section 3 requirement 4.

Y:YTypeX:XType Z:ZType

Bus:TBus

VP1
1..1
AD

A:Incomp

Ain

Yout Zout

Bout

Xout

VR
BinBin

Legend:
(see fig 1)

Choice set

Variable role (VR)
descriptor for role Bin,
variation point VP1,
cardinality 1..1,
Binding time AD,

Link between
variable role
descriptor and
(elements of)
choice setVP1

1..1
AD

VR
Bin

Fig. 2. Definition of a variable role Bin for variation point VP1, with choice set (alternatives)
X, Y and Z. In the corresponding role Bin a choice is made: it is linked to X.

Different aspects of variation points as discussed in Section 3 are modeled in Fig 2:
• The location of the variation point see requirement 3. The variation point is

modeled by means of a variable role descriptor on a connector. This de-
scribes variability with respect to the number and linking of roles of a con-
nector,

• The cardinality, the minimum and maximum number of components that
must be chosen: In this case the cardinality is 1..1, one component must be
chosen,

The choice set (alternatives) from which must be chosen in this case X, Y and Z.
For an optional alternative variation point, the cardinality would be 0..1 with a

choice set of more than one. For an optional variation point, the cardinality is 0..1,
with a choice set of only one component. In this way all kinds of variation points
mentioned in requirement 4 can be modeled.

In Fig.2 also shows that a variable role descriptor has a binding time. This indicates
when a variant must be bound, and thus in which phases the variability is applicable.
The variable role descriptor VR-Bin models that the variability is only available at the
binding time AD which stands for Architectural Description. Other possible abbrevia-
tions are C (for Compile-time), L (for Link-time), SU (for Startup), R (For run-time).
Binding time modeling corresponds to requirement 9.

In Fig. 2 both the variability and the specific choice are represented. The role Bin
contains a link to X, thus representing the choice of X for this variation point.
Through this mechanism the following is achieved:

• Both the variability and the choice are represented, see requirements 5 and 7,
• Backtracking is possible: the link of Bin can be rearranged, as long as the

development hasn’t progressed to the next step in the process, see require-
ment 8.

We note explicitly that variation points as discussed here present variability with
respect to the linking of roles.

4.3 Variation points with two or more Variable Role Descriptors

In Fig. 3 a variation point with two variable role descriptors is represented. This situa-
tion can be described in the following way: A component chosen from the set {X, Y,
Z} must not only be linked to the connector Bus, but also to the connector CBus, pos-
sibly in order to be indirectly connected (not shown) to some user interface compo-
nent.

We see in Fig. 3 that there are two variable role descriptors VR-Bin at Bus and
VR-Bout at CBus both connected to the same variation point. When a choice is made
at one role, e.g, to link X to the role Bin at connector Bus, a role Bout at CBus must
be linked to the same component X. Since only one role can be chosen independently,
we make the distinction between independent and dependent variable role descriptors.
Thus for a role corresponding to the independent variable role descriptor VR-Bin at
the connector Bus a choice between X, Y and Z can indeed be made while for a role
corresponding to VR-Bout at CBus the linked component depends on that choice.

Bus:TBus

VP1
1..1
AD

CBus:TBus

VR
Bin

Y:YTypeX:XType Z:ZType

Yout ZoutXout

Yin Zin

VR
Bout

Xin

VP1
1..1
AD

Legend:
(See fig. 2)

VR
Bin

VR
Bout

Independent,
Variable role
descriptor (with
choice set)
Dependent,
Variable role
descriptor
(without choice
set)

Fig. 3. Both Bin and Bout correspond to the same variation point VP1. The choice in Bout of
CBus depends on the choice in Bin.

4.4 Variability in used subcomponents

As described in Section 4.1, we allow components with an inner architecture. In this
inner architecture variability is again possible.

Fig. 4 shows how variability within components is modeled. So-called variable in-
terface descriptors are introduced here. A variable interface descriptor describes how
an interface of the outer component can be linked in different ways to interfaces of
subcomponents. The variable interface descriptor of Sin is independent. It has the
choice set {O, P}, therefore either O or P can be linked to Sin. The variable interface
descriptor of SoI is dependent, so that when O is chosen at Sin, O will also be linked
to SoI.

S:SType

S

O:OType P:PTypeBus:TBus

VP-S
1..1
AD

OoII PoII

PinOin

VI-
SinSin

So
IBin.

1

Legend:
(see fig. 3)

Sub-component X
linked via IoIn to Io of
component S

Variable Interface
Descriptor of interface
Sin, Corresponding to
Variation point VP-S,

X

Io

IoIn

VP-S
1..1
AD

VI-
SinSin

VP-S
1..1
AD

VI-
SoI

Bout

Fig. 4. A component with variability within. The Grey box S is the outer component. Within S,
at the interface Sin there is one independent variable interface descriptor, the developer can
choose at architectural description time between O and P. The variable interface descriptor of
SoI is dependent.

5. Validation

Given the modeling elements described in Section 4 we can now model the vari-
ability for the examples in Section 2.
Fig. 5. shows a (variable) architecture modeled in AVDL with both variability and
specific choices for the Bosch example. Salient aspects are:

• Turbo Diesel and car control (pressure measurement) are not explicitly
linked through some kind of dependency (the dependency relationship is
possible in AVDL, but not explained in Section 4), however the required –
provided interface check connects the two components: when the Turbo Die-
sel component is selected which requires a pressure measurement interface,
there must be somewhere a component that provides the pressure measure-
ment interface. In this case only the car control (pressure measurement)
component provides that interface.

Invocation bus

VR-
control

VR-
motor

motor
control

pressure
in

VP-
motor
0..1
AD

VP-
motor
1..1
AD

VP-
control

0..1
AD

VP-
control

1..1
ADVR-

pressure
out

VR-
pressure in

Petrol:PType

Pin

Diesel:DType

Din

Turbo
Diesel:TDType

TDinI
pressure

car
control:ContType

car control
(pressure

measurement):Pr
Type

Pr
outI pressure

Cout

pressure
out

Fig. 5. Variability and valid choices for the simplified Bosch example.

• The “VR-pressure out” variable role descriptor at the invocation bus is de-
pendent of the “VR-motor” role descriptor and describes an optional role
“pressure out”. Both correspond to the variation point “VP-motor”. When a
Turbo Diesel component is selected, the pressure out role is automatically
linked to that component. The analogy is true for “VR-pressure in” and “VR-
control” variable role descriptors for the variation point “VP-control”.

Fig. 6 shows a part of the Thales example. In this figure no new aspects are intro-

duced with respect to Section 4.4. For each of the two variation points (abbreviated
with VP-TS for Tracking System and VP-DL for Data Logging System) there are one
independent and two dependent variable interface descriptors.

Bus:TBus

TrackManagementSystem:TMType

DL2 (track
data):DL2Typ

e
TS:TS1Type DL:DLType

TS 2(logging):
TS2Type

VP-
TS
1..1
AD
VP-
DL
1..1
AD

vi
1

vi
2

VP-
DL

VP-
TS

VP-
TS

VP-
DL

TS-
HCI:PC

DL-
HCI:PC

HCI:
HCIType

Fig. 6. Variability Modeled for the simplified Thales Example

5.2 Remarks

For the Bosch example, it is useful if the option for pressure measurement is not de-
fined as a separate variant of the motor control but as a variation point with respect to
the interface of the component. This is a useful extension of AVDL.

For the Thales example the provided modeling elements seem to be sufficient.

5 Related work

Quite some work is and has been done on handling large-scale solution domain vari-
ability in product families through the formalization of this variability, possibly map-
ping it to feature variability. Some of this work, e.g. [TRYGG95], [DEURS02],
[GUENT92] represents variability in a way (more or less) independent of the software
domain. Especially the general representation of [GUENT92] is of interest for us in
order to map AVDL to this in order to get automatic support for configuration, deriva-
tion of correct products etc. However, we believe that a representation of both the
variability and the configuration that gives insight to the functioning of the system is
essential for supporting the derivation of complex products.

With respect to representation of variability that gives insight in the functioning of
the system, some work is based on UML [CLAUS01], [MUHTI02]. While better pos-
sibilities for architectural description are introduced in version 2.0 of UML, so far
UML has not been viewed as optimal for describing architecture, and therefore the

work for describing variability through UML is better suited for describing variability
at the level of detailed design.

ADL’s are seen as better for describing architecture [CLBBG02]. Of interest for
describing architectural variability is the work on KOALA [OMMER02] and the
work on Mae [HOEK01]. An important disadvantage of Koala which makes it unsuit-
able for our purposes is that it is domain dependent: Links between components have
a default semantics, therefore disallowing porting Koala to other domains. Mae is di-
rected at supporting evolution through versioning, but otherwise in Mae variability is
not explicitly modeled and therefore also insufficient for our purposes.

Our work makes use of the ideas of Bachmann & Bass [BABA01]. We further-
more subscribe to the viewpoint of Asikainen et.al. [ASIKA03] that the underlying
aims of ADL modeling and configuration modeling are not totally similar and for that
reason decided to introduce AVDL which could make this bridge.

6 Conclusion

In order to handle the large-scale variability in product families, automated product
derivation support is needed. To make automated product derivation possible one im-
portant ingredient is that the solution domain should be formalized, both allowing the
formal description of the variability (the possible solutions) and the formal description
of the choices, the configuration. We assert that in order to support the application
engineer such a formalization should be presented to the developer in a way that gives
insight of the functioning of the system. It is for example of importance for the appli-
cation engineer to be able to view and describe his/her solution at the architectural
level, in terms of components and relationships between components. ADL’s provide
means for describing systems in this way and ideas of ADL’s are being introduced in
the coming version of UML, UML2.0. Currently however, most ADL’s don’t provide
specific support for describing architectural variability in the context of product fami-
lies. On basis of ADL’s we have therefore introduced AVDL (Architectural Variabil-
ity Description Language). One of the salient aspects of AVDL is that it allows de-
scribing the fixed part of the architecture, it’s variability and the choices in one
model. If one would separate these aspects, it would either not be clear to the devel-
oper where in the architecture certain choices can be made, and which choices (s)he
made corresponding to which variability where in the architecture.

We have done a first test on AVDL, by using its language elements on one indus-
trial based (Bosch) and one industrial example (Thales). This validation is preliminary
since the examples are still not full-fledged, they don’t cover the full product families,
which is still to be done. The first results are however promising.

We have formalized AVDL on basis of X-ADL [XADL] which stands for “eXten-
sible Architectural Description Language”, we plan to publish about this. In the near
future we intend to study modeling of variation points as independent entities. We
furthermore plan to map AVDL to a logic-based language for knowledge based con-
figuration as described by [GUENT92]. We also intend to submit constructs defined
in this paper for new versions of UML.

References

[ASIKA03] T. Asikainen, T. Soininen, and T. Männistö. Towards Managing Variability using
Software Product Family Architecture Models and Product Configurators. In Proc. of Soft-
ware Variability Management Workshop, pages 84–93, Groningen, The Netherlands, Febru-
ary 13-14 2003.

[BABA01] F. Bachmann, L. Bass. Managing Variability in Software Architectures. ACM
SIGSOFT Software Engineering Notes, Proceedings of the 2001 symposium on Software re-
usability: putting software reuse in context, May 2001Volume 26 Issue 3

[BOSCH00] J. Bosch. Design & Use of Software Architectures: Adopting and Evolving a
Product Line Approach. Addison-Wesley, May 2000.

[CLAUS01] M. Clauss. Generic Modeling using UML Extensions for Variability. In DSVL
2001 (OOPSLA Workshop on Domain Specific Visual Languages). Jyvaskylae University
Printing House, Jyvaskylae, Finland, 2001.

[CLEME02] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[CLBBG02] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. Staf-
ford. Documenting Software Architectures. Addison-Wesley, 2002.

[DEURS02] A. van Deursen, M. de Jonge, T. Kuipers. Feature-Based Product Line Instantia-
tion using Source-Level Packages, Proceedings of SPLC2, Springer-Verlag 2002

[GUENT92] A. Guenter, R. Cunis, Flexible Control in Expert Systems for Construction Tasks,
Journal Applied Intelligence, 2(4): 369-385, 1992.

[HOEK01] A. vd. Hoek, M. Mikic-Rakic, R. Roshandel, N. Medvidovic. Taming Architectural
Evolution, Proceedings of ESEC/FSE, ACM 2001

[KANG90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, 1990.

[MEDVI00] N. Medvidovic, R.N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages, IEEE Transactions on Software Engineering,
26(1): 70-93, Jan. 2000.

[MUHTI02] D. Muhtig, C. Atkinson. Model-Driven Product Line Architectures. Proceedings
of SPLC2, Springer-Verlag 2002.

[NORTH02] L. Northrop. SEI Software Product Line Tenets. IEEE Software, 19(4),
July/August 2002.

[OMMER02] R. van Ommering. Building Product Populations with Software Components.
Proceedings of ICSE’02, ACM 2002

[STUMP97] M. Stumptner. An Overview of Knowledge-based Configuration. AI Communica-
tions, 10(2):111–126, 1997.

[TRYGG95] E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Systems with Variability us-
ing the PROTEUS Configuration Language. In J. Estublier, editor, Software Configuration
Management: Selected Papers SCM-4 and SCM-5. Springer-Verlag, Seattle, WA, USA,
April 1995.

[XADL] XADL homepage. http://www.isr.uci.edu/projects/xarchuci/

http://www.isr.uci.edu/projects/xarchuci/

	References

