
Taming Numbers and Durations in the Model Checking

Integrated Planning System

Stefan Edelkamp

Institut f�ur Informatik, Georges-K�ohler-Allee, Geb�aude 51,

Albert-Ludwigs-Universit�at, 79110 Freiburg, Germany

eMail: edekamp@informatik.uni-freiburg.de

September 20, 2002

Abstract

The Model Checking Integrated Planning System (MIPS) has shown distinguished perfor-

mance in the second and third international planning competitions. With its object-oriented

framework architecture MIPS clearly separates the portfolio of explicit and symbolic heuris-

tic search exploration algorithms from di�erent on-line and o�-line computed estimates and

from the grounded planning problem representation.

In 2002, the domain description language for the benchmark problems has been extended

from pure propositional planning to include rational state resources, action durations, and

plan quality objective functions. MIPS has been the only system that produced plans in

each track of every benchmark domain. This article presents and analyzes the algorithmic

novelties necessary to tackle the new layers of expressiveness.

The planner extensions include critical path analysis of sequentially generated plans to

generate optimal parallel plans. The linear time algorithm bypasses known NP hardness

results for partial ordering with mutual exclusion by scheduling plans with respect to the set

of actions and the imposed causal structure. To improve exploration guidance approximate

plans are scheduled for each encountered planning state.

One major strength of MIPS is its static analysis phase that grounds and simpli�es

parameterized predicates, functions and operators, that infers single-valued invariances to

minimize the state description length, and that detects symmetries of domain objects. The

aspect of object symmetry is analyzed in detail.

The paper shows how temporal plans of any planner can be visualized in Gannt-chart

format in a client-server architecture. The frontend turns also be appropriate for concise

domain visualization.

1

Contents

1 Introduction 3

2 The Development of MIPS 5

3 Terminology 6

3.1 Sets and Indices . 7

3.2 Grounded Planning Problem Instances . 9

3.3 Static Analysis . 10

4 Architecture of MIPS 11

4.1 Heuristics . 12

4.2 Exploration Algorithms . 14

5 Temporal Planning 15

5.1 Temporal Model . 15

5.2 Operator Dependency . 16

5.3 Critical Path Analysis . 18

5.4 Graphplan Distances . 19

5.5 Full Enumeration Algorithms . 20

5.6 Heuristic Search Enumeration . 21

5.7 Pruning Anomalies . 22

5.8 Arbitrary Plan Objectives . 23

6 Symmetry 23

6.1 Static Symmetries . 24

6.2 Dynamic Symmetries . 25

6.3 Symmetry Reduction in MIPS . 26

7 Visualization 27

8 Related Work 28

8.1 Problem Classes and Methods . 28

8.2 Competing Planners . 30

8.3 Symbolic Model Checking based Planners . 31

9 Conclusions 32

References 32

2

1 Introduction

The Model Checking Integrated Planning System MIPS has participated twice in the interna-

tional planning competition: in the second planning competition at AIPS-2000 in Beckenridge

(USA) and in the third planning competition at AIPS-2002 in Toulouse (France). As the name

indicates, the MIPS project targets the integration of model checking techniques into a domain-

independent action planner.

Model checking (Clarke, Grumberg, & Peled, 1999) is the automated process to verify if a

formal model of a system satis�es an speci�ed temporal property or not. As an illustrative

example, take an elevator control system together with a correctness property that requires an

elevator to eventually stop on every call of a passenger or that guarantees that the door is closed,

while the elevator is moving.

Although the success in checking correctness is limited, model checkers found many subtle

errors in current hardware and software designs. Models often consists of many concurrent sub-

systems. Their combination is either synchronous, as often met in hardware design veri�cation,

or asynchronous, as frequently given in communication and security protocols, or in multi-

threaded programming languages like Java.

Exploration of model checking domains spans very large spaces of all reachable system states.

This e�ect is usually denoted as the state explosion problem, even if the sets of generated states

rather than the states themselves grow that quickly.

An error that shows a safety property violation, like a deadlock or a failed assertion, corre-

sponds to one of a set of target nodes in the state space graph. Roughly speaking, something bad

has occured. A liveness property violation refers to a (seeded) cycle in the graph. Roughly speak-

ing, something good will never occur. For the case of the elevator example, eventually reaching

a target state where a request button was pressed is a liveness property, while certifying closed

doors refers to a safety property.

In this paper we refer to safety properties only, since goal achievement in traditional and

competition planning problems have yet not been extended with temporal properties. However,

temporally extended goals are of increasing research interests (Kabanza, Barbeau, & St-Denis,

1997; Pistore & Traverso, 2001; Lago, Pistore, & Traverso, 2002).

The two main validation processes in model checking are explicit and symbolic search. In

explicit-state model checking each state refers to a �xed memory location and the state space

graph is implicitly generated by successive expansions of state.

In symbolic model checking (McMillan, 1993; Clarke, McMillan, Dill, & Hwang, 1992),

�xed-length binary encodings of states are usually seen as mandatory, so that each state can

be represented by its characteristic Boolean function. The function evaluates to true if and

only if all state variables are assigned to according bit values. Sets of states are expressed

by the disjunct of the individual characteristic functions. On the other hand satis�ability and

uniqueness of Boolean formulae is NP hard.

The unique symbolic representation of sets of states as Boolean formulae through binary

decision diagrams (BDDs) (Bryant, 1992) is often much smaller than the explicit one. BDDs

are (ordered) read-once branching programs with nodes corresponding to variables, edges corre-

sponding to variable outcomes, and each path corresponding to an assignment to the variables

with the resulting evaluation at the leaves. One reason of the succinctness of BDDs is that

directed acyclic graphs may express exponentially many paths. Since states are encoded in bi-

nary, the transition relation is de�ned on two state variable sets. It evaluates to true, if and

only if an operator exists that transforms a state into a valid successor. In some sense, BDDs

exploit regularities of the state set and often appear better suited to regular hardware systems,

in contrast to many software system that inherit a highly asynchronous and irregular structure,

so that the straight use BDD with their �xed variable ordering is probably not
exible enough.

For symbolic exploration a set of states is combined with the transition relation to compute

the set of all possible successor states, i.e. the image. Starting with the initial state, iteration

3

of image computations eventually explores the entire reachable state space. To improve the

e�ciency of image computations, transition relations are often provided in partitioned form.

The correspondence of action planning and model checking can be roughly characterized

as follows. Similar to model checkers, action planners implicitly generate large state spaces,

and both exploration approaches base on applying parameterized operators to the current state.

States in model checking and in planning problems are both labeled by (propositional state)

predicates. The satisfaction of a speci�ed property on the one side and the arrival at a certain

goal state on the other, leads to a slight di�erence in the according search objective. With

this respect, the goal in action planning is a safety error and the corresponding (error) trail is

interpreted as a plan. In the elevator example, the goal of a planning task is to reach a state, in

which the doors are open and the elevator is moving. For a formal treatment on the embedding

of planning problems into model checking terminology, we refer the reader to (Giunchiglia &

Traverso, 1999).

Model checkers perform either symbolic or explicit exploration. To the contrary MIPS fea-

tures both and allows to combines symbolic and explicit search planning. It applies heuristic

search; a search acceleration technique that has let to considerable gains in both communities.

In the last few years, heuristic search planners frequently outperform other domain-independent

planning approaches, e.g. (Ho�mann & Nebel, 2001), and heuristic search model checkers turn

out to signi�cantly improve state-of-the-art, e.g. (Edelkamp, Leue, & Lluch-Lafuente, 2002).

Including resource variables (like the fuel level of a vehicle or the distance between locations)

and action duration (i.e. the time passed during execution of the planning operator) are relatively

new aspects for action planning, at least in form of an accepted domain description accessible

for competitive planning (Fox & Long, 2001). The competition input format PDDL2.1 is not

restricted to variables of �nite domain, but also includes speci�cation of rational (
oating-point)

variables in both precondition and e�ects. Similar to a set of atoms described by a propositional

predicate, a set of numerical quantities can be described by a set of parameters. Through the

notation of PDDL2.1, we refer to parameterized numerical quantities as functions. For example,

the fuel level might be parameterized by the vehicle that is present in the problem instance

description.

In the 2002 competition, domains were provided in di�erent tracks according to di�erent

layers of language expressiveness: i) pure propositional planning, ii) planning with numerical

resources, iii) planning with numerical resources and constant action duration, iv) planning

with numerical resources and variable action duration, and, in some cases, v) more complex

problems usually combining time and numbers in more interesting ways. MIPS competed as a

fully automated system and performed remarkably well in all �ve tracks; it solved a high number

of problems and was the only system that produced solutions in each track of every benchmark

domain.

In this paper the main algorithmic aspects to tame rational numbers, objective functions,

and action duration are described. The article is structured as follows. First, we recall the

development of the MIPS system and assert its main contributions to the planning community.

Then we address the object-oriented heuristic search framework architecture of the system.

Subsequently, we �x some terminology that allows to give a formal de�nition of the syntax and

the semantics of a grounded mixed numerical and propositional planning problem instance.

We then introduce the core contributions: critical path scheduling for concurrent plans, and

e�cient methods for detecting and using symmetry cuts. PERT scheduling produces optimal

parallel plans given a sequence of operators and a precedence relation among them in linear

time. The paper discusses pruning anomalies and handling of di�erent optimization criteria. We

analyze the correctness and e�ciency of symmetry detection in detail. Afterwards, a TCP/IP

client-server visualization system for sequential and temporal plans is presented. The article

closes with related work and concluding remarks.

4

2 The Development of MIPS

The competing versions of MIPS refer to initial �ndings (Edelkamp & Re�el, 1999) of heuristic

symbolic exploration of planning domains with the �cke model checker (Biere, 1997) that al-

ready lead to good performance in puzzle solving (Edelkamp & Re�el, 1998) and in hardware

veri�cation (Re�el & Edelkamp, 1999). For general propositional planning, our concise BDD

library StaticBdd1 has been used.

During the implementation process we changed the BDD representation to improve per-

formance mainly for small planning examples and chose the public domain c++ BDD package

Buddy (Lind-Nielsen, 1999). In the beginning of the project the variable encodings were pro-

vided by hand, while the representation of all possible operator descriptions were established by

enumerating all possible parameter instances. Once the encoding and transition relation were

�xed, symbolic exploration in form of a reachability analysis of the state-space could be exe-

cuted. At that time, we were not aware of any other work in BDD-based planning like (Cimatti,

Giunchiglia, Giunchiglia, & Traverso, 1997), which is probably the �rst link to planning via

(symbolic) model checking.

Since the above approach was criticized not to be fully automated, we subsequently developed

a parser and a static analyzer to cluster atoms into groups in order to minimize the length of the

state encoding (Edelkamp & Helmert, 1999). The outcome of the analyzer allowed to specify

states and transition functions in Boolean terms, which in turn were included in a bidirectional

BDD exploration and solution extraction procedure. In the end, MIPS was the �rst automated

planning system based on symbolic model checking.

In the second international planning competition MIPS (Edelkamp & Helmert, 2001) could

handle the STRIPS (Fikes & Nilsson, 1971) subset of the PDDL language (McDermott, 2000)

and some additional features from ADL (Pednould, 1989), namely negative preconditions and

(universal) conditional e�ects. MIPS was one of �ve planning systems to be awarded for \Dis-

tinguished Performance" in the fully automated track. The competition version (Edelkamp &

Helmert, 2000) already included explicit heuristic search algorithms based on a bit-vector state

representation and the relaxed planning heuristic (RPH) (Ho�mann & Nebel, 2001) and sym-

bolic heuristic search based on the HSP-Heuristic (Bonet & Ge�ner, 2001) and a one-to-one

atom RPH-derivate. However, at the end we used breadth-�rst bi-directional symbolic search

in each case the single state heuristic searcher got stuck in its exploration.

In between the planning competitions, explicit (Edelkamp, 2001c) and symbolic pattern

databases (Edelkamp, 2002b) were proposed as o�-line generated estimators referring to com-

pletely explored problem abstractions. Roughly speaking, pattern database abstractions slice

the state vector of
uent facts into pieces and adjusts the operators accordingly. The completly

explored subspaces then serve as admissible estimate for the overall search and are competetive

with the relaxed planning heuristic.

For the 2002's international planning competition new levels of the planning domain de-

scription language (Fox & Long, 2001) have been designed to specify problems that include

actions with durations and resources. The agreed input language de�nition is referred to as

PDDL 2.1. While Level 1 considers pure propositional planning, Level 2 also includes numerical

resources and objective functions to be minimized, and Level 3 additionally allows to specify

actions with durations. Consequently, MIPS2 has been extended to cope with these new forms

of expressiveness.

In (Edelkamp, 2001b) �rst results of MIPS in planning PDDL 2.1 problems are presented.

The preliminary treatment exempli�es the parsing process in two simple benchmark domains.

Moreover, propositional heuristics and manual branching cuts were applied to accelerate sequen-

tial plan generation. This work was extended in (Edelkamp, 2002a), where two approximate

exploration techniques to bound and to �x numerical domains, �rst results on symmetry detec-

1See http://www.informatik.uni-freiburg.de/~edelkamp/StaticBdd
2A recent version of MIPS is available in source code at www.informatik.uni-freiburg.de/~edelkamp

5

tion based on fact groups and critical path scheduling, an any-time wrapper to produce optimal

plans and a numerical extension to RPH were presented. Enumerating variable domains and

the any-time wrapper were excluded from the competition version of MIPS because of their

unpredictable impact on the planner performance.

Our approach to extend RPH with numerical information establishes plans even in challeng-

ing numerical domains like Settlers and was developed independently from Ho�mann's work on

his competing planner Metric-FF. Since his planner appears to be more general in its parsing

process to generate monotone numerical quantities for the relaxation, we omitted the algorith-

mic issues for this aspect from this manuscript. The reader is refered to (Ho�mann, 2002a) for

further information on this important issue of relaxed plan generation.

Although possible and plausible, in the competition, (S)PDBs estimates were �nally not

included for plan generation in MIPS, since the integration of numerical state facets and the

retrieval of the corresponding relaxed plan operators had not been �nished. Hence, the applied

heuristic search engine at least in the competition version of MIPS relates to a numerical relaxed

plan generator with important pre- and postprocessing aspects.

Hence, we selected the main contributions of this paper to include the following aspects:

� the formal de�nition of grounded propositional and numerical planning and an index

scheme for grounding predicate, functions, and actions;

� the object-oriented framework architecture to choose and combine di�erent heuristics with

di�erent search algorithms and storage structures;

� the static analyzer that applies e�cient fact-space exploration to distinguish constant from

variable atoms and resource variables, that clusters facts into groups and that infers static

object symmetries;

� di�erent pruning methods, especially dynamic symmetry detection, hash and transposition

cuts, and di�erent strategies for optimizing objective functions and further implementation

tricks that made the system e�cient;

� a throughout study of dynamic object symmetries, their time and space complexities and

a possible trade-o� as implemented in MIPS;

� optimal temporal planning enumeration algorithms based on a precedence ralation and

PERT scheduling of sequentially generated plans together with a concise analysis of cor-

rectness and optimality;

� the integration of PERT scheduling already in the heuristic estimate to guide the search

favoring states with smaller parallel plan length;

� the intermediate format of grounded and simpli�ed planning domain instances to serve as

an interface for other planners;

� a client-server system for visualization including a wrapper for temporal plans to be pre-

sented in Gannt-chart format, and a domain-dependent frontend for executing sequential

plans.

3 Terminology

Our running example is the following instance to of a simple PDDL 2.1 problem in Zeno-Travel

and illustrated in Figure 1. The initial con�guration is drawn to the left of the �gure and the

goal con�guration to its right. Some global and local numerical variable assignment are not

shown.

6

Ernie

Dan
A

D

B

C

600

8001000

1000
Scott

Ernie
Dan

A

D

B

C

600

8001000

1000

Scott

Figure 1: An Instance to the Zeno-Travel Domain: Start State (left) and Goal State (right).

In Figures 2 and 3 we provide the according textual domain and problem speci�cation3. The

instance asks for a temporal plan to
y passengers (dan, scott, and ernie) located somewhere

on a small map (including the cities city-a, city-b, city-c, and city-d) with an aircraft

(plane) to their respective target destinations. Boarding and debarking takes a constant amount

of time. The plane has a determined capacity of fuel. Fuel and time are consumed according to

the distances between the cities and with respect to two di�erent travel speeds. Since fuel can

be restored by refueling the aircraft, the total amount of fuel is also maintained as a numerical

quantity.

3.1 Sets and Indices

Table 1 displays the basic terminology for sets used in this paper. As most currently successful

planning system, MIPS grounds parameterized information present in the domain description.

Set Descriptor Example(s)

OBJ objects dan, city-a, plane, . . .

T YPE object types aircraft, person, . . .

PRED predicates (at ?a ?c), (in ?p ?a), . . .

FUNC numerical functions (fuel ?a), (total-time), . . .

ACT parameterized actions (board ?a ?p), (refuel ?a), . . .

IACT instantiated actions (board plane scott), . . .

O � IACT
uent operators (board plane scott), . . .

IPRED instantiated predicates (at plane city-b), . . .

F � IPRED
uents (at plane city-b), . . .

IFUNC instantiated funtions (distance city-a city-b), . . .

V � IFUNC variables (fuel plane), (total-time), . . .

Table 1: Basic Set De�nitions.

For all sets we infer a suitable array embedding, indicated by a mapping � from this set

to a �nite domain and vice versa. This embedding is important to deal with unique identi�ers

of entities instead of their textual or internal representation. The arrays containing the corre-

sponding information can then be accessed in constant time. Almost all planners that perform

grounding prior to the search address instantiations by identi�ers.

For sets that occur in the domain or problem speci�cation without any parameterization like

CONST ;PRED;FUNC;ACT ; T YPE ;ACT , and OBJ , the index � refers to the position of

3[...] denotes that source fragments were omitted for the sake of brevity. In the given example these are the

action de�nitions for debarking a passenger and
ying an airplane..

7

(define (domain zeno-travel)

(:requirements :durative-actions :typing :fluents)

(:types aircraft person city)

(:predicates (at ?x - (either person aircraft) ?c - city)

(in ?p - person ?a - aircraft))

(:functions (fuel ?a - aircraft) (distance ?c1 - city ?c2 - city)

(slow-speed ?a - aircraft) (fast-speed ?a - aircraft)

(slow-burn ?a - aircraft) (fast-burn ?a - aircraft)

(capacity ?a - aircraft) (refuel-rate ?a - aircraft)

(total-fuel-used) (boarding-time) (debarking-time))

(:durative-action board

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration boarding-time)

:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))

[...]

(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city)

:duration (= ?duration (/ (distance ?c1 ?c2) (fast-speed ?a)))

:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a) (* (distance ?c1 ?c2) (fast-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (increase total-fuel-used

(* (distance ?c1 ?c2) (fast-burn ?a))))

(at end (decrease (fuel ?a)

(* (distance ?c1 ?c2) (fast-burn ?a))))))

(:durative-action refuel

:parameters (?a - aircraft ?c - city)

:duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))

:condition (and (at start (< (fuel ?a) (capacity ?a)))

(over all (at ?a ?c)))

:effect (at end (assign (fuel ?a) (capacity ?a))))

)

Figure 2: Zeno-Travel Domain Description in PDDL2.1.

occurrence. Let k(p), k(f), and k(a) denote the arity (the number of parameters) of predicate

p 2 PRED, function f 2 FUNC, and a 2 ACT , respectively. The index for an instantiated

predicate (p o1 : : : ok(p)) 2 IPRED is computed as

�((p o1 : : : ok(p))) = (p) +

k(p)X
i=1

�(oi)jOBJ j
i�1;

where (p) =
P�(p)�1

i=1 jOBJ j
k(pi) is the o�set of predicate p 2 PRED and jOBJ j is the

cardinality of set OBJ . Taking jOBJ j as the radix is a rather coarse value for all parameter

instantiations; one could re�ne the index by using parameter type information.

Indices for instantiated functions (f o1 : : : ok(f)) 2 IFUNC are determined analogously.

Instantiated actions a 2 IACT with parameters p1; : : : ; pk(a) are consequently addressed by the

following index

8

(define (problem zeno-travel-1)

(:domain zeno-travel)

(:objects plane - aircraft

ernie scott dan - person

city-a city-b city-c city-d - city)

(:init (= total-fuel-used 0) (= debarking-time 20) (= boarding-time 30)

(= (distance city-a city-b) 600) (= (distance city-b city-a) 600)

(= (distance city-b city-c) 800) (= (distance city-c city-b) 800)

(= (distance city-a city-c) 1000) (= (distance city-c city-a) 1000)

(= (distance city-c city-d) 1000) (= (distance city-d city-c) 1000)

(= (fast-speed plane) (/ 600 60)) (= (slow-speed plane) (/ 400 60))

(= (fuel plane) 750) (= (capacity plane) 750)

(= (fast-burn plane) (/ 1 2)) (= (slow-burn plane) (/ 1 3))

(= (refuel-rate plane) (/ 750 60))

(at plane city-a) (at scott city-a) (at dan city-c) (at ernie city-c))

(:goal (and (at dan city-a) (at ernie city-d) (at scott city-d)))

(:metric minimize total-time)

)

Figure 3: Zeno-Travel Problem Instance.

�((a p1 : : : pk(a))) = (a) +

k(a)X
i=1

�(pi)jOBJ j
i�1:

After static analysis has established a superset of all occurring
uents F , operators O and

variables V, in MIPS the index range is reduced to a minimum, thereby re�ning � to �0. In the

following we keep � as a descriptor, and assume that �(p) 2 f1; : : : ; jPjg, �(f) 2 f1; : : : ; jVjg,

and �(a) 2 f1; : : : ; jOjg.

In the following we �rst give the formal description of a grounded planning problem and

then turn to the static analyzer that infers the according and supplementary information.

3.2 Grounded Planning Problem Instances

As many other planners MIPS refers to grounded planning problem representations.

De�nition 1 (Grounded Planning Instance) A grounded planning instance is a quadruple P =

hS; I;O;Gi, where S is the set of planning states, I 2 S is the initial state, G � S is the set of

goal states. In mixed propositional and numerical planning problem the state space S is given by

S � 2F � IRjVj;

where 2F is the power set of F . Therefore, a state S 2 S is a pair (Sp; Sn) with propositional

part Sp 2 2
F and numerical part Sn 2 IRjVj.

For the sake of brevity, we assume the operators to be in normal form, by means that propo-

sitional parts (preconditions and e�ects) satisfy standard STRIPS notation (Fikes & Nilsson,

1971) and numerical parts are given in form of arithmetic trees t taken from the set of all trees T

with arithmetic operations in the nodes and numerical variables and evaluated constants in the

leaves. With LeafVariables(t), t 2 T , we denote the set of all leaf variables in the tree t. However,

there is no fundamental di�erence to more general preconditions and e�ects representations. The

current implementation in MIPS takes a generic precondition tree, thereby including comparison

symbols, logical operators (in the nodes) and arithmetic subtrees.

9

De�nition 2 (Syntax of Grounded Planning Operator) An operator o 2 O in normal form

o = (�; �;
; �) has propositional preconditions � � F , propositional e�ects � = (�a; �d) � F
2,

numerical preconditions
, and numerical e�ects �. A numerical precondition c 2
 is a triple

c = (hc;
; tc), where hc 2 V,
 2 f�; <;=; >;�g, and tc 2 T . A numerical e�ect m 2 � is a

triple m = (hm;�; tm), where hm 2 V, � 2 f ; "; #g and tm 2 T .

Obviously,
 2 f�; <;=; >;�g represents the associated comparison relation, while de-

notes an assigment to a variable, while " and # indicate a respective increase or decrease operation

to it. This allows to formalize the application of planning operators to a given state.

De�nition 3 (Semantics of Grounded Planning Operator Application) An operator o = (�; �;
; �) 2

O applied to a state S = (Sp; Sn), Sp 2 2
F and Sn 2 IR

jVj, yields a successor state S0 = (S0p; S
0

n) 2

2F � IRjVj as follows.

We say that a vector Sn = (S1; : : : ; SjVj) of numerical variables satis�es a numerical con-

straint c = (hc;
; tc) 2
 if s�(hc)
 eval(Sn; tc) is true, where eval(Sn; tc) 2 IR is obtained by

substituting all v 2 V in tc by S�(hc) followed by a simpli�cation of tc.

If � � Sp and Sn satis�es all c 2
 then S0p = Sp [�a n �d and the vector Sn is updated for

all m 2 � . We say that the vector Sn = (S1; : : : ; SjVj) is updated to vector S0n = (S01; : : : ; S
0

jVj
)

by modi�er m = (hm;�; tm) 2 �, if

� S0
�(hm) = eval(Sn; tm) for � = ,

� S0�(hm) = S�(hm) + eval(Sn; tm) for � = ", and

� S0
�(hm)

= S�(hm) � eval(Sn; tm) for � = #.

The propositional update S0p = Sp [�a n �d is de�ned as in standard STRIPS. The set of

goal states G is often given as G = (Gp;Gn) with a partial propositional state descrition Gp � F ,

and Gn as a set of numererical preconditions c = (hc;
; tc). Moreover, the arithmetic trees tc
usually collaps to simple leaves labeled with numerical constants. Hence, we might assume that

jGnj � jVj.

3.3 Static Analysis

The static analyzer takes the domain and problem instance as an input, grounds its propositional

state information and infers di�erent forms of planner independent static information.

� Parsing: Our simple Lisp parser generates a tree of Lisp entities. It reads the input �les

and recognizes the domain and problem name. To cope with typing we temporarily assert

constant typed predicates to be removed together with other constant predicates in a

further pre-compiling step. Thereby, we infer a type hierarchy and an associated mapping

of objects to types.

� Indexing: Based on the number of counted objects, �rst indices for the grounded pred-

icates, functions and actions are devised. Since in our example problem we have eight

objects and the predicates at and in have two parameters, we reserve 2 � 8 � 8 = 128 index

positions. Similarly, the function distance consumes 64 indices, while fuel, slow-speed,

fast-speed, slow-burn, fast-burn, capacity, and refuel-rate each reserve eight index

positions. For the quantities total-fuel-used, boarding-time, debarking-time only a

single fact identi�er is needed. Last but not least we interpret duration as an additional

quantity total-time.

� Flattening Temporal Identi�ers: According to our assumption of �nite branching in this

phase we interpret each action as in integral entity, so that all timed propositional and

10

numerical preconditions can be merged. Similarly, all e�ects are merged, independent of

their happening. Invariance conditions like (over all (at ?a ?c)) in the action board

are included into the precondition set. We will discuss the rationale of this step in Section 5.

� Grounding Propositions: Fact-space exploration is a relaxed enumeration of the planning

problem to determine a superset of all reachable facts. Algorithmically, a FIFO fact queue

is comprised. Successively extracted facts at the front of the queue are matched to the

operators. Each time all preconditions of an operator are ful�lled, the resulting atoms

according to the positive e�ect (add) list are determined and enqueued. This allows to

distinguish constant from
uent facts, since only the latter are reached by exploration.

� Grouping Atoms: For a concise encoding of the propositional part we group
uent facts

in sets of mutually exclusive groups, so that each state in the planning space can be

expressed as a conjunct of (possibly trivial) facts drawn from each fact group (Edelkamp

& Helmert, 1999). More formally, let #pi(o1; : : : ; oi�1; oi+1; : : : ; on) be the number of

objects oi for which the fact (p o1 : : : on) is true. We establish a single-valued invariance

at i if #pi(o1; : : : ; oi�1; oi+1; : : : ; on) = 1. All �x object oj, j 6= i, are representative of the

invariance and label the group. To allow for a better encoding, some predicates like at and

in are merged. In the example three groups determine the unique position of the persons

(one of �ve) and one group determines the position of the plane (one of four). Therefore,

3 � dlog 5e+ 1 � dlog 4e = 11 bits su�ce to encode the encountered 19
uent facts.

� Grounding Actions: Fact-space exploration also determines all grounded operators. Once

all preconditions are met and grounded, the symbolic e�ect lists are instantiated. In our

case we determine 98 instantiated operators, which, by some further simpli�cations that

eliminate duplicates and void operators, are reduced to 43.

� Grounding Functions: Synchronous to fact space exploration of the propositional part of

the problem all heads of the numerical formulae in the e�ect lists are grounded. In the

example case only three instantiated formulae are
uent: fuel plane with initial value

750 as well as total-fuel-used and total-time both initialized with zero. All other nu-

merical predicates are in fact constants that can be substituted in the formula-bodies. For

example, the numerical e�ect in board dan city-a reduces to (increase (total-time)

30), while zoom plane city-a city-b has the following numerical e�ects: (increase

(total-time) 150), (increase (total-fuel-used) 300)), and (decrease (fuel plane)

300). Refueling, however, does not reduce to a single rational number, e.g. the e�ects

in refuel plane city-a only simplify to (increase (total-time) (/ (- (750 (fuel

plane)) / 12.5))) and (assign (fuel plane) 750). To evaluate the former assign-

ment variable total-time has to be instantiated on-the-
y. This is due to the fact that

the value of the quantity fuel plane is not constant and itself changes over time.

4 Architecture of MIPS

Figure 4 depicts the main components of MIPS and the data
ow from the input de�nition of

the domain and the problem instance to the resulting temporal plan in the output.

The planning process can be coarsely grouped into two stages, static analysis and (heuristic

search) planning.

The intermediate textual format of the static analyzer in annotated grounded PDDL-like rep-

resentation serves as an interface e.g. for other planners or model checkers and as an additional

resource for plan visualization. Figures 5 and 6 depict an example output for the intermediate

representation in the Zeno-Travel example.

The object-oriented framework design of MIPS allows di�erent heuristic estimates to be

combined with di�erent search strategies, access data structures, and scheduling options.

11

problem.pddldomain.pddl

static analyzer

numerical

relaxed plan

sequential plan

temporal plan

symbolic PDBs explicit PDBs

intermediate representation

symbolic search explicit search

EHC

RPH

PERT

scheduling
RPH

RPH
BDD-BFSBDDA*, A*, IDA*,

Figure 4: Architecture of MIPS

4.1 Heuristics

MIPS incorporates more than six di�erent estimates.

� Relaxed planning heuristic (RPH): Approximation of the number of planning steps needed

to solve the propositional planning problem with all delete e�ects removed (Ho�mann &

Nebel, 2001). The heuristic is constructive, i.e. it returns the set of operators that appear

in the relaxed plan.

� Numerical relaxed planning heuristic (numerical RPH): Our numerical extension to RPH is

a combined propositional and numerical forward and backward approximation scheme, also

allowing for multiple operator application. Our version for integrating numbers into the

relaxed planning heuristic is sound, but not as general as Ho�mann's contribution (Ho�-

mann, 2002a): it restricts to variable-to-constant comparisons, and lacks the simpli�cation

of linear constraints.

� Pattern databases heuristic (explicit PDB heuristic): Explicit PDBs were already men-

tioned in the historical overview of MIPS. The di�erent abstractions are found in a greedy

best-�t bin-packing manner, yielding a selection of large PDBs in form of perfect hash ta-

bles that �t into main memory. If necessary, PDBs can be designed to be disjoint yielding

an admissible estimate (Edelkamp, 2001c).

� Symbolic pattern database heuristic (symbolic PDB heuristic): Symbolic PDBs apply to

both explicit and symbolic heuristic search engines. Due to the succinct BDD-representation

of sets of states the averaged heuristic estimate can be increased while decreasing the

number of nodes to be explored in the overall search. Symbolic PDBs are often orders of

12

(define (grounded zeno-travel-zeno-travel-1)

(:fluents

(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)

(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)

(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d)

(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)

(in dan plane) (in ernie plane) (in scott plane))

(:variables (fuel plane) (total-fuel-used) (total-time))

(:init

(at dan city-c) (at ernie city-c) (at plane city-a) (at scott city-a)

(= (fuel plane) 750) (= (total-fuel-used) 0) (= (total-time) 0))

(:goal (at dan city-a) (at ernie city-d) (at scott city-d))

(:metric minimize (total-time))

(:group dan

(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)

(in dan plane))

(:group ernie

(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)

(in ernie plane))

(:group plane

(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d))

(:group scott

(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)

(in scott plane))

Figure 5: Grounded Representation of Zeno-Travel Domain.

magnitudes larger than explicit ones. Due to state conversion into a Boolean representa-

tion the retrieval of a heuristic estimate is slower than hashing, but still linear in the state

description length (Edelkamp, 2002b),

� Scheduling relaxed plan heuristic (scheduling RPH, SRPH): Critical-path analysis by

PERT scheduling may also guide the plan �nding phase. Di�erent to the RPH heuristics,

which computes the length of the greedily extracted plan, SRPH also takes the sequence

of operators into account and searches for a good parallel arrangement. Adding PERT-

schedules for the path to a state and for the sequence of actions in the relaxed plan is not

as accurate as the PERT-schedule of the combined paths. Therefore, the classical merit

function of A*-like search engines f = g + h of generating path length g and heuristic

estimate h is not immediate. We de�ne the heuristic value of SRPH as the parallel plan

length of the combined path minus the parallel plan length of the generating path.

� One suitable combination of the PDB heuristic and RPH heuristics that is also imple-

mented in MIPS, compares the retrieved result of the PDBs with the set of operators in

the plan graph that respect the abstraction. The intuition is to slice the relaxed plan

graph. If in the backward exploration an add-e�ect is selected the match will be assigned

to its fact group. If the number of matches in an abstraction is smaller than the retrieved

PDB value it will be increased by the lacking amount.

In the competition, except for numerical domains we chose pure RPH for sequential plan

generation and scheduling PRH for temporal domains. Only in pure numerical problems we

used numerical RPH. We have experimented with (symbolic) PDBs with mixed results. Since

in our implementation PDBs are purely propositional and do not allow the retrieval of the

corresponding operator sets of the optimal abstract plan, we have not included PDB search in

the competition version of MIPS.

13

(:action board dan plane city-a

:condition

(and (at dan city-a) (at plane city-a))

:effect

(and (in dan plane) (not (at dan city-a))

(increase (total-time) (30.000000))))

[...]

(:action zoom plane city-a city-b

:condition

(and

(at plane city-a)

(>= (fuel plane) (300.000000)))

:effect

(and (at plane city-b) (not (at plane city-a))

(increase (total-time) (60.000000))

(increase (total-fuel-used) (300.000000))

(decrease (fuel plane) (300.000000))))

[...]

(:action refuel plane city-a

:condition

(and

(at plane city-a)

(< (fuel plane) (750.000000)))

:effect

(and

(increase (total-time) (/ (- (750.000000) (fuel plane)) (12.500000)))

(assign (fuel plane) (750.000000))))

[...]

)

Figure 6: Grounded Representation of Zeno-Travel Domain (cont.).

4.2 Exploration Algorithms

The algorithm portfolio includes:

� Weighted A* (weighted A*/A*): The A* algorithm (Hart, Nilsson, & Raphael, 1968)

can be casted as a derivate of Dijkstra's SSSP exploration on a re-weighted graph. For

lower bound heuristics, original A* can be shown to generate optimal plans (Pearl, 1985).

Weightening the in
uence of the heuristic estimate may accelerate solution �nding, but

also a�ects optimality (Pohl, 1977). The set of horizon nodes are maintained in a priority

queue Open, while the settled nodes are kept in Closed.

In MIPS, Weighted A* is implemented with a Dial or a Weak-Heap priority queue data

structure (Dial, 1969; Edelkamp & Stiegeler, 2002). The former is used for propositional

planning only, while the latter applies to general planning with scheduling estimates. Ar-

rays have been implemented as a dynamic table that double their sizes if they become

�lled. MIPS stores all generated and expanded states in a hash table. An alternative,

yet not implemented, but more
exible storage structure is collection of persistent trees

as in the TL planning system (Bacchus & Kabanza, 2000), one for each predicate. In

the best case queries and update times to the structure are logarithmic in the number of

represented atoms.

� Weighted Iterative-Deepening A* ((W)IDA*): The memory-limited variant of (Weighted)

A* is well-suited to large exploration problems with e�cient evaluation functions of small

integer range (Korf, 1985). In MIPS, IDA* is extended with bit-state hashing (Edelkamp

14

& Meyer, 2001) to improve duplicate detection with respect to ordinary transposition

tables (Reinefeld & Marsland, 1994). This form of partial search e�ectively trades state-

space coverage for completeness. For a further compression of the planning state space, all

variables that appear in the objective function are neglected from hash address calculations

and state comparisons.

� Enforced Hill Climbing (EHC): The approach is another compromise between exploration

and exploitation. EHC searches with an improved evaluation in breadth-�rst manner and

commits established decisions as �nal (Ho�mann, 2000). EHC is complete in undirected

problem graphs and seems to have a slight advantage to Weighted A* when combined with

RPH and other pruning cuts. On the other hand, it can be misguided in unstructured

planning domains and is likely to get lost in problem graphs with dead-ends.

� Bidirectional Symbolic Breadth-First-Search (BDD-BFS): The implementation performs

bidirectional blind symbolic search, choosing the next search direction in favor to the faster

executions of the previous iterations (Edelkamp & Helmert, 1999).

� Weighted Symbolic A* (BDDA*): The algorithm performs guided symbolic search and

takes a (possibly partitioned) symbolic representation of the heuristic as an additional

input. Given a consistent estimate for a uniformly weighted graph, BDDA* performs at

most O(f�
2

) iterations, where f� is the optimal solution length, where consistent estimates

keep the accumulated f -values on each exploration path monotonical increasing.

� Weak and Strong Planning: These two symbolic exploration algorithms suited to non-

deterministic planning have been added to MIPS (Cimatti, Roveri, & Traverso, 1998), but

due to the lack of an agreed standard for a domain description language, the implemen-

tation was only tested on deterministic samples in which the above symbolic algorithms

clearly perform better. The encoding scheme directly transfers to the non-deterministic

scenario, where plans were stored in a form of state-action tables.

In the competition we applied Weighted A* with weight 2, e.g. the merit for all states S 2 S

was �xed as f(S) = g(S)+2 �h(S), yielding good but not necessarily optimal plans. In temporal

domains we introduced an additional parameter � to scale the in
uence between propositional

estimates (fp(S) = gp(S) + 2 � hp(S)) and scheduled ones (fs(S) = gs(S) + 2 � hs(S)). More

precisely, we altered the comparison function for the priority queue, so that a comparison of

parallel length priorities was invoked if the propositional di�erence of values was not larger than

� 2 IN0. A higher value of � refers to a higher in
uence of the SRPH, while � = 0 indicates no

scheduling at all. In the competition we produced data with � = 0 (Pure MIPS), and � = 2

(optimized MIPS).

5 Temporal Planning

PDDL 2.1 domain descriptions include temporal modi�ers at start, over all, and at end,

where label at start denotes the preconditions and e�ects at invokation time of the action, over

all refers to an invariance condition and at end to the �nalization conditions and consequences

of the action.

5.1 Temporal Model

In Figure 7 we show two di�erent options to
atten this information back to planning with

preconditions and e�ects to derive its semantic.

In the �rst case (top right), the compound operator is split into three smaller parts, one for

action invocation, one for invariance maintenance, and one for action termination. This is the

semantic suggested by (Fox & Long, 2001).

15

cond:

e�:
pre:

pre: pre: e�: pre: e�:

e�:

e�:

at-endat-start

A B C

A0 B0 C 0

A A0 B B0 C C 0

ABC A0B0C 0

over-all

Figure 7: Compiling Temporal Modi�ers into Operators.

As expected there are no e�ects in the invariance pattern, i.e. B0 = ;. Moreover, we found

that in the benchmarks it is uncommon that new e�ects in at-start are preconditioned for

termination control or invariance maintenance, i.e. A0
\ (B [C) = ;.

Therefore, in MIPS the simpler second operator representation model was chosen (bottom

right). The intermediate format of the example problem in Figures 5 and 6 implicitly assumed

this simpler temporal model. At least for sequential plan �nding we have not observed any

de�ciencies by assuming this temporal model, in which each action starts immediately after a

previous one has terminated.

This simple temporal model motivates the de�nition of the �rst plan objective: the sequential

plan.

De�nition 4 (Sequential Plan) A sequential plan �s = (O1; : : : ; Ok) is an ordered sequence of

operators Oi 2 O, i 2 f1; : : : ; kg, that transforms the initial state I into one of the goal states

G 2 G, i.e., there exists a sequence of states Si 2 S, i 2 f0; : : : ; kg, with S0 = I, Sk = G and Si
is the outcome of applying Oi to Si�1, i 2 f1; : : : ; kg.

Minimizing sequential plan length was the only objective in the �rst and second planning

competition. Since Graphplan-like planners (Blum & Furst, 1995) like IPP (Koehler, Nebel,

& Dimopoulos, 1997) and STAN (Long & Fox, 1998) already produced parallel plans, this

was a indeed a limiting aspect to evaluate plan quality. The most important reason for this

arti�cial restriction was that total-ordered plans were easier accessible for automated validation,

a necessity for evaluating correctness in a competitive scenario.

5.2 Operator Dependency

The formal de�nition of operator dependency allows to avoid the transpositioned generation of

independent actions and, more importantly, enables optimal schedules of sequential plans with

respect to the generated action sequence and its causal structure. If all operators are dependent

(or void with respect to the optimizer function), the problem is inherent sequential and no

schedule leads to any improvement.

De�nition 5 (Dependency/Mutex Relation) Two grounded operators o = (�; �;
; �) and o0 =

(�0; �0;
0; �0) in O are dependent/mutex, if one of the following three conditions holds:

1. The propositional precondition set of one operator has a non-empty intersection with the

add or the delete lists of the other one, i.e., � \ (�0a [�
0

d) 6= ; or (�a [�d) \ �
0
6= ;.

2. The head of a numerical modi�er of one operator is contained in some condition of the

other one, i.e. there exists a c0 = (h0c;
; t
0

c) 2

0 and a m = (hm;�; tm) 2 � with hm 2

LeafVariables(t0c) [fh
0

cg or there exists a c = (hc;
; tc) 2
 and a m0 = (h0m;�; t
0

m) 2 �
0

with h0m 2 LeafVariables(tc)[fhcg. Intuitively, an operator modi�es variables that appear

in the condition of the other. This may be referred to as a direct con
ict.

16

3. The head of the numerical modi�er of one operator is contained in the formula body of the

modi�er of the other one, i.e., there exists a m = (hm;�; tm) 2 � and m
0 = (h0m;�; t

0

m) 2 �
0

with hm 2 LeafVariables(t0m) or h
0

m 2 LeafVariables(tm). This may be referred to as an

indirect con
ict.

The dependence relation may be re�ned according to the PDDL 2.1 guidelines for mutual

exclusion (Fox & Long, 2001), but for our purposes for improving sequential plans this approach

is su�cient. In our implementation (at least for temporal and numerical planning) the depen-

dence relation is computed beforehand and tabulated for constant time access. To improve

the e�ciency of pre-computation, the set of leaf variables is maintained in an array, once the

grounded operator is constructed.

To detect domains for which any parallelization leads to no improvement, a planning domain

is said to be inherently sequential if all operators in any sequential plan are dependent or instan-

taneous (i.e. with zero duration). The static analyzer checks this by testing each operator pair.

While some benchmark domains like DesertRats and Jugs-and-Water are inherently sequential,

others like ZenoTravel and Taxi are not.

Operator independence also indicates transpositions of two operators o1 and o2 to safely

prune exploration in sequential plan generation.

De�nition 6 (Parallel Plan) A parallel plan �c = ((O1; t1); : : : ; (Ok; tk)) is a schedule of op-

erators Oi 2 O, i 2 f1; : : : ; kg, that transforms the initial state I into one of the goal states

G 2 G, where Oi is executed at time ti.

(B�ackstr�om, 1998) clearly distincts partial ordered plans (O1; : : : ; Ok;�), with the relation

� � fO1; : : : ; Okg
2 being a partial order (re
exive, transitive, and antisymmetric), from parallel

plans (O1; : : : ; Ok;�;#), with # � (� [��1) (irre
exive, symmetric) expressing, which actions

must not be executed in parallel.

De�nition 7 (Precedence Ordering) A ordering �d induced by the set of operators fO1; : : : ; Okg

and a dependency relation is given by Oi �d Oj, if Oi and Oj are dependent and 1 � i < j � k.

Precedence is not a partial ordering, since it is neither re
exive nor transitive. By computing

the transitive closure of the relation, however, precedence could be extended to a partial ordering.

A sequential plan O1; : : : ; Ok produces an acyclic set of precedence constraints Oi �d Oj , 1 �

i < j � k, on the set of operators. It is also important to observe, that the constraints are

already topologically sorted according to �d by taking the node ordering f1; : : : ; kg.

De�nition 8 (Respecting Precedence Ordering in Parallel Plan) Let d(O) for O 2 O be the

duration of operator O in a sequential plan. For a parallel plan �c = ((O1; t1); : : : ; (Ok; tk)) that

respect �d, we have ti + d(Oi) � tj for Oi �d Oj, 1 � i < j � k.

For optimizing plans (B�ackstr�om, 1998) de�nes parallel execution time as maxfti+d(Oi) j Oi 2

fO1; : : : ; Okgg, so that if Oi � Oj, then ti+d(Oi) � tj, and if Oi#Oj , then either ti+d(Oi) � tj
or tj+d(Oj) � ti. These two possible choices in # are actually not apparent in practice, since we

already have a precedence relation at hand and just seek the optimal arrangement of operators.

In contrast we assert that only one option, namely ti + d(Oi) � tj can be true, reducing # to

�d. More importantly, (B�ackstr�om, 1998)'s work introduces unnecessary time complexity, since

optimized scheduling a set of �xed-timed operators is already an NP-complete problem.

De�nition 9 (Optimal Parallel Plan) An optimal parallel plan with respect to a sequence of

operators O1; : : : ; Ok and precedence ordering �d is a parallel plan �� = ((O1; t1); : : : ; (Ok; tk))

with minimal parallel execution time OPT = maxfti + d(Oi) j Oi 2 fO1; : : : ; Okgg among all

parallel plans �c = ((O1; t
0

1); : : : ; (Ok; t
0

k)) that respect �d.

17

Procedure Critical-Path

Input: Sequence of operators O1; : : : ; Ok, precedence ordering �d

Output: Optimal parallel plan length maxfti + d(Oi) j Oi 2 fO1; : : : ; Okgg

for all i 2 f1; : : : ; kg

e(Oi) = d(Oi)

for all j 2 f1; : : : ; i� 1g

if (Oj �d Oi)

if e(Oi) < e(Oj) + d(Oi)

e(Oi) e(Oj) + d(Oi)

return max1�i�k e(Oi)

Table 2: Algorithm to Compute Critical Path Length.

Many algorithms have been suggested to convert sequential plans into partial ordered ones (Ped-

nault, 1986; Regnier & Fade, 1991; Veloso, P�erez, & Carbonell, 1990). Most of them interpret a

total ordered plan as a maximal constrained partial ordering � = f(O1; Oj) j 1 � i < j � kg and

search for least constraint plans. However, the problem of minimum constraint \deordering" has

also been proven to be NP-hard, except if the so-called validity check is polynomial (B�ackstr�om,

1998), where deordering maintains validity of the plan by lessening its constraintness, i.e. �0��

for a new ordering �0.

Since we have an explicit model of dependency and time, optimal parallel plans will not

change the ordering relation �d at all.

5.3 Critical Path Analysis

The Project Evaluation and Review Technique (PERT) is a critical path analysis algorithm

usually applied to project management problems. The critical path is established, when the

total time for activities on this path is greater than any other path of operators. A delay in any

tasks on the critical path leads to a delay in the project. The heart of PERT is a network of

tasks needed to complete a project, showing the order in which the tasks need to be completed

and their dependencies between them. As shown in Table 2, PERT scheduling reduces to a

derivate of Dijkstra's single shortest path algorithm within acyclic graphs (Cormen, Leiserson,

& Rivest, 1990).

In the algorithm, e(Oi) is the tentative earliest end time of operator Oi, i 2 f1; : : : ; kg, while

the earliest starting times ti for all operators in the optimal plan are given by ti = e(Oi)�d(Oi).

Theorem 1 (PERT Scheduling) Given a sequence of operators O1; : : : ; Ok and a precedence

ordering �d an optimal parallel plan �� = ((O1; t1); : : : ; (Ok; tk)) can be computed in optimal

time O(k + j �d j).

Proof: The proof is done by induction on i 2 f1; : : : ; kg. The induction hypothesis is

that after iteration i the value e(Oi) is correct, e.g. e(Oi) is the earliest end time of operator

Oi. This is clearly true for i = 1, since e(O1) = d(O1). We now assume that the hypothesis

is true 1 � j < i and look at iteration i. There are two choices. Either there is a j 2

f1; : : : ; i � 1g with (Oj �d Oi). For this case after the inner loop is completed, e(Oi) is set to

minfe(Oj) + d(Oj) j Oj �d Oi; j 2 f1; : : : ; i � 1gg. On the other hand, e(Oi) is optimal, since

Oi cannot start earlier than minfe(Oj) j Oj �d Oi; j 2 f1; : : : ; i � 1gg, since all values e(Oj)

are already the smallest possible by induction hypothesis. If there is no j 2 f1; : : : ; i� 1g with

18

(Oj �d Oi), then e(Oi) = d(Oi) as in the base case. Therefore, at the end max1�i�k e(Oi) is the

optimal parallel path length.

The time and space complexities of the algorithm Critical-Path are clearly in O(k2), where

k is the length of the sequential plan. Using an adjacency list representation these e�orts can be

reduced to time and space proportional to the number of vertices and edges in the dependence

graph, which are of size O(k + j �d j). The bound is optimal, since the input consists of �(k)

operators and �(j �d j) dependencies among them. 2

5.4 Graphplan Distances

In this section we restrict the planning model to valid STRIPS plans as in the original article

of Graphplan (Blum & Furst, 1995), where the execution cost of each operator is 1 and the

semantics of a parallel plan are as follows.

For each time step i, i 2 f1; : : : ; lg, a state Si 2 S is generated by applying all operators with

time stamp i� 1 to Si�1, where S0 = I. An optimal parallel plan is a parallel plan of minimal

length l. The name dependency is borrowed from the notion of partial order reduction in explicit-

state model checking (Clarke et al., 1999), where two operators O1 and O2 are independent if

for each state S 2 S the following two properties hold:

1. Enabledness is preserved, i.e. O1 and O2 do not disable each other.

2. O1 and O2 are commutative, i.e. executed in any order O1 and O2 lead to the same state.

Two actions interfere, if they are dependent. The original Graphplan de�nition is very closed

to ours, which �xes interference as �0d \ (�a [�) 6= ; and (�0a [�
0) \ �d 6= ;.

Lemma 1 If �d � � and �0d � �
0, operator inference in the Graphplan model is implied by the

propositional MIPS model of dependence.

Proof: If �d � � and �0d � �0, for two independent operators o = (�; �) and o0 = (�0; �0):

� \ (�0a [�
0

d) = ; implies �d \ (�
0

a [�
0

d) = ;, which in turn yields �a \ �
0

d = ;. The condition

�0a \ �d = ; can be inferred analogously by exchanging primed and unprimed variables. 2

Theorem 2 Two independent STRIPS operators o = (�; �) and o0 = (�0; �0) in O with �d � �

and �0d � �
0 are enabledness preserving and commutative, i.e. for all states in S � 2jAj we have

o(o0(S)) = o0(o(S)).

Proof: Since �d � � and �0d � �0, we have �a \ �
0

d = ; and �
0

a \ �d = ; by Lemma 1. Let

S0 be the state ((S n �d) [�a) and let S00 be the state ((S n �0d) [�
0

a). Since (�
0

a [�
0

b)\ � = ;, o

is enabled in S00, and since (�a [�b) \ �
0 = ;, o0 is enabled in S0. Moreover,

o(o0(S)) = (((S n �0d) [�
0

a) n �d) [�a

= (((S n �0d) n �d) [�
0

a) [�a

= S n (�0d [�d) [(�
0

a [�a)

= S n (�d [�
0

d) [(�a [�
0

a)

= (((S n �d) n �
0

d) [�a) [�
0

a

= (((S n �d) [�a) n �
0

d) [�
0

a = o0(o(S))

2

A less restrictive notion of independence, in which several actions may occur at the same

time even if one deletes an add-e�ect of another is provided in (Knoblock, 1994).

19

All three models of valid plans are restrictive, since they assume that for each parallel

plan there exist at least one corresponding total ordered plan. In general, however, this is not

true. Consider the simple STRIPS planning problem domain with I = fBg, G = ffA;Cgg,

and O = f(fBg; fAg; fBg); (fBg; fCg; fBg)g. Obviously, both operators are needed for goal

achievement, but there is no sequential plan of length 2, since B is deleted in both operators.

However, a parallel plan could be executed, since all precondition are ful�lled at the �rst time

step.

5.5 Full Enumeration Algorithms

Even though full state-space enumaration is far from being practical they provide a basis for

heurisitic search engines. In optimal parallel plans, each operator either starts or ends at the

start or end time of another operator. Therefore, for a �xed number of operators, we can assume

a possibly exponential but �nite number of possible parallel plans.

This immediately leads to the following plan enumeration algorithm ENUM-1. For all jOji

operator sequences of length i, i 2 IN, generate all possible partial orderings, check for each

individual schedule if it transforms the initial state into one of the goals, and take the sequence

with smallest parallel plan length. Since all parallelizations are computed we have established

the following result.

Theorem 3 If the number of operators for an optimal parallel plan is bounded, ENUM-1 is

complete and computes optimal parallel plans.

Note that the �rst i with a matching solution does not necessarily yield an optimal parallel

path, since longer operator sequences might rise better parallel solutions. ENUM-1 can also

generate non-valid plans in the Graphplan model. For a better distinction between the objectives

for parallel plans, we keep the notion of validity in this section.

Assuming only valid plans implies that each parallel plan corresponds to at least one (pos-

sible many) sequential ones. Viewed from the opposite side, each partial-ordered plan can be

established by generating a totally-ordered plan �rst and then apply a scheduling algorithm to it

to �nd its best partial-order. Therefore, the next two enumeration schemes produce valid plans

only.

Enumeration algorithm ENUM-2 generates all feasible sequential plans of length i with

increasing i 2 IN, and computes their optimal schedule with respect to the number of operators

and dependency property. Since optimal parallelization of all valid operator sequences are

computed we have established the following theorem.

Theorem 4 If the number of operators for an optimal parallel plan is bounded, ENUM-2 is

complete and computes a valid optimal parallel plan.

A complete enumeration scheme of all sequential plans that transform the initial state into

one goal state is also still computationally expensive, but ruling out impossible operator appli-

cations drastically reduces the vast number of jOji operator sequences of length i. B�ackstr�om's

result for deriving partial orders has shown, that given the sequence of operators in a sequential

plan, to infer an optimized partial order that respects a set of mutexes is NP-hard, so that even

for the second phase no polynomial-time algorithm is to be expected. Therefore, at least for

STRIPS we have restricted the PSPACE-hard planning task (Bylander, 1994) to an NP-hard

problem for each generated sequential plan.

When the concept of mutual exclusion is extended to a precedence relation between operators,

there exist at least one sequential plan that respects the set of operators and the set of precedence

constraints. From the opposite point of view, for each sequential plan there exist at least one

parallel plan that respects both the number of operators and the imposed set of precedence

constraints.

20

Algorithm ENUM-3 is a straight variant of ENUM-2 that simply applies PERT scheduling

for �nding the optimal parallel plan, with the main di�erence that it additionally maintains the

causal structure.

We have seen that ENUM-1 may generate parallel plans that ENUM-2 cannot produce.

Are there also valid plans that ENUM-2 can produce, but ENUM-3 cannot? The answer is no.

If ENUM-2 terminates with an optimal schedule, we generate a corresponding sequential plan

while preserving the causal structure. Optimal PERT-scheduling of this plan with respect to

the set of operators and the imposed precedence relation will yield back the optimal parallel

plan. Since all sequential paths are eventually generated, the given partial will also be found by

ENUM-3. This proves the following result.

Theorem 5 If the number of operators for an optimal parallel plan is bounded, ENUM-3 is

complete and computes a valid optimal parallel plan.

In the following, we interpret optimized parallel plans as nodes in a weighted directed graph

G = (V;E;w). Edges correspond to possible extensions of the plans with an additional operator,

which can be found by a sequentialization of the parallel plan followed by a PERT scheduling

operation. The weight function denotes the di�erence in parallel plan length. Since the set

of operators and the precedence set is enlarged, all weights will be greater than or equal to

0. If only a �nite number of actions can be executed in parallel, then any in�nite path in G

has unbounded cost. Therefore, we can traverse G in shortest path ordering using Dijkstra's

algorithm to �nally yield an optimal parallel plan.

The argument for optimality is that Dijkstra's algorithm is complete, i.e., it cannot exit with

failure, since if the horizon list becomes becomes empty there is no solution at all. If the horizon

is not empty, there is at least one node on an optimal solution path, which has to be selected

before any goal node with larger cost.

Theorem 6 If only a �nite number of actions can be executed in parallel, Dijkstra's shortest

path enumeration is complete and computes a valid optimal parallel plan.

5.6 Heuristic Search Enumeration

The enumeration algorithms in the previous section are sound, complete and optimal in theory.

On the other hand enumeration schemes do not contradict known undecidability results in

numerical planning (Helmert, 2002). If we have no additional information like a bound to the

maximal number of actions in a plan or on the number of actions that can be executed in parallel,

we cannot say if the enumeration will terminate or not.

The main drawback of the above approaches is that they are seemingly too slow for practical

planning. Heuristic search algorithms like A* and IDA* reorder the traversal of states in the

planning problem, and an admissible estimate does not a�ect completeness and optimality. The

reason for completeness in �nite graphs is that the number of acyclic paths in G is �nite and with

every node expansion, A* adds new links to its traversal tree. Each newly added link represents

a new acyclic path, so that the reservoir of path must eventually be exhausted. The argument is

valid for any best-�rst strategy that prunes cyclic paths, but by their move-committing nature,

hill-climbing algorithms are not complete.

(Pearl, 1985) has shown that A* is complete even on in�nte graphs, demanding that the

cost of every in�nite path is unbounded. A deeper investigation shows that given an admissible

estimate there must always be a node in the current search horizon with optimal priority. Ac-

tually to preserve this condition for admissible but not necessarily consistent estimates, already

expanded node may have to be reconsidered (re-opening). Hence, A* must also terminate with

an optimal solution.

Theorem 7 If the cost of every in�nite plan is unbounded, A* enumeration with an admissible

parallel plan length estimate computes a valid optimal parallel plan.

21

0: (zoom plane city-a city-c) [100]

100: (board dan plane city-c) [30]

130: (board ernie plane city-c) [30]

160: (refuel plane city-c) [40]

200: (zoom plane city-c city-a) [100]

300: (debark dan plane city-a) [20]

320: (board scott plane city-a) [30]

350: (refuel plane city-a) [40]

390: (zoom plane city-a city-c) [100]

490: (refuel plane city-c) [40]

530: (zoom plane city-c city-d) [100]

630: (debark ernie plane city-d) [20]

650: (debark scott plane city-d) [20]

0: (zoom plane city-a city-c) [100]

100: (board dan plane city-c) [30]

100: (board ernie plane city-c) [30]

100: (refuel plane city-c) [40]

140: (zoom plane city-c city-a) [100]

240: (debark dan plane city-a) [20]

240: (board scott plane city-a) [30]

240: (refuel plane city-a) [40]

280: (zoom plane city-a city-c) [100]

380: (refuel plane city-c) [40]

420: (zoom plane city-c city-d) [100]

520: (debark ernie plane city-d) [20]

520: (debark scott plane city-d) [20]

Figure 8: A Sequential Plan for Zeno-Travel (left) and its PERT Schedule (right).

Note that the assumption of unbounded sequential plan costs is not true in all benchmark

problems, since there may be an in�nite sequence of instantaneous events that do not contribute

to the plan objective. For example, loading and unloading tanks in DesertRats does not a�ect

total-fuel consumption, which is to be minimized in one benchmark instance.

As a matter of fact, informative admissible parallel plan length estimates are not easy to

obtain. This was the reason in MIPS to chose sequential plan generation �rst, because very

e�ective heuristics are known to generate sequential plans quickly. With the SRPH we choose a

parallel plan length approximation, but since it extends PRH, it is known to be not admissible.

5.7 Pruning Anomalies

Other acceleration techniques like sequential plan hashing, symmetry and transposition cuts

have to be chosen carefully to maintain parallel plan length optimality.

Take for example sequential state memorization, i.e. the memorization of states in the

sequential plan generation process. This approach does a�ect parallel optimality, as the following

example shows.

Consider the sequences

(zoom city-a city-c plane), (board dan plane), (refuel plane),

(zoom city-c city-a plane), (board scott), (debark dan), (refuel plane),

and

(board scott),(zoom city-a city-c plane),(board dan plane),

(refuel plane), (zoom city-c city-a plane), (debark dan), (refuel plane)

in the Zeno-Travel problem. The set of operators is the same and so is the resulting (se-

quentially generated) state.

However, the PERT schedule for the �rst sequence is shorter than the schedule for the second

one, since in the previous case the time for boarding scott is compensated by the remaining

two operators.

For small problems, such anomalies can be avoided by avoided duplicate pruning at all. As

an example Figure 8 depicts a sequential plan for the example problem instance and its PERT

schedule, which turns out to be the overall optimal parallel plan.

In order to generate sequential solutions for large planning problem instances, in the com-

petition version of MIPS we have introduced cuts that a�ect optimality but reduce the number

of expansions signi�cantly.

22

0: (board scott plane city-a) [30]

30: (fly plane city-a city-c) [150]

180: (board ernie plane city-c) [30]

180: (board dan plane city-c) [30]

210: (fly plane city-c city-a) [150]

360: (debark dan plane city-a) [20]

360: (refuel plane city-a) [53.33]

413.33: (fly plane city-a city-c) [150]

563.33: (fly plane city-c city-d) [150]

713.33: (debark ernie plane city-d) [20]

713.33: (debark scott plane city-d) [20]

0: (zoom plane city-a city-c) [100]

100: (board dan plane city-c) [30]

100: (board ernie plane city-c) [30]

100: (refuel plane city-c) [40]

140: (zoom plane city-c city-a) [100]

240: (debark dan plane city-a) [20]

240: (board scott plane city-a) [30]

240: (refuel plane city-a) [40]

280: (fly plane city-a city-c) [150]

430: (fly plane city-c city-d) [150]

580: (debark ernie plane city-d) [20]

580: (debark scott plane city-d) [20]

Figure 9: Optimized Plans in Zeno-Travel according to di�erent Plan Objectives.

5.8 Arbitrary Plan Objectives

In PDDL 2.1 di�erent plan metrics can be devised. In Figure 9 we depict two plans found by

MIPS when modifying the objective function from minimizing total-time to minimize total--

fuel-used, and to minimize the compound (+ (* 10 (total-time)) (* 1 (total-fuel--

used))).

For the �rst case we computed an optimal value of 1,333.33, while for the second case we

established 7,666.67 as the optimized merit. When optimizing time, the ordering of board and

zoom actions is important. When optimizing total-fuel we reduce speed to save fuel consumption

to 333.33 per
ight but we may board the �rst passenger immediately. We also save two refuel

actions with respect to the �rst case.

When increasing the importance of time we can trade refueling actions for time, so that both

zooming and
ight actions are chosen for the complex minimization criterion.

We �rst thought, that we could simply substitute the plan objective in the PERT scheduling

process. However, the results did not match with the ones produced by the validator (Long &

Fox, 2001a), in which the �nal time is substituted in the objective function after the plan has

been build.

The way we evaluate objective functions that include time is as follows. First we schedule

the (relaxed or �nal) sequential plan. Then we temporarily substitute the total-time value in

the state with the parallel plan length and evaluate the formula to get the objective function

value. To avoid con
icts in subsequent expansions, afterwards we set the value total-time back

to the optimal one in the sequential plan.

6 Symmetry

An important feature of parameterized predicates, functions and action descriptions in the

domain speci�cation �le is that actions are transparent to di�erent bindings of parameters to

objects. Disambiguating information is present in the problem instance �le.

In case of typed domains, many planners, including MIPS, compile all type information into

additional predicates, attach additional preconditions to actions and enrich the initial states by

suitable object-to-type atoms.

As a consequence, a symmetry is viewed as a permutation of objects that is present in the

current state, in the goal representation, and transparent to the set of operators.

There are n!, n = jOBJ j, possible permutations of the set of objects. Taking into account

all type information reduces the number of all possible permutation to
n

t1; : : : ; tk

!
=

n!

t1! � : : : � tk!
:

23

where ti is the number of objects with type i, i 2 f1; : : : ; k = jT YPESjg. In a moderate

sized logistic domain with 10 cities, 10 trucks, 5 airplanes, and 15 packages, this results in

40!=(10! � 10! � 5! � 15!) � 1020 permutations.

To reduce the number of potential symmetries to a tractable size we restrict symmetries to

object transpositions, for which we have at most n(n�1)=2 2 O(n2) candidates. Including type

information this number further reduces to

kX
i=1

ti

2

!
=

kX
i=1

ti(ti � 1)=2:

In the following, the set of typed object transpositions is denoted by SYMM. For the

example, we have jSYMMj = 45 + 45 + 10 + 105 = 205.

6.1 Static Symmetries

We generate a set of object pairs (o; o0) 2 SYMM, indistinguishable with respect to the set of

instantiated operators and the goal speci�cation.

De�nition 10 (Object Transpositions for Fluents, Variables, and Operators) A transposition

of objects (o; o0) 2 SYMM applied to a
uent f = (p o1; : : : ; ok(p)) 2 F , written as f [o $ o0],

is de�ned as (p o01; : : : ; o
0

k(p)), with o
0

i = oi if oi =2 fo; o
0
g, oi = o0 if oi = o, and oi = o if oi = o0,

i 2 f1; : : : ; k(p)g. Object transpositions [o $ o0] applied to a variable v = (f o1; : : : ; ok(f)) 2 V

or to an operator O = (a o1; : : : ; ok(a)) 2 O are de�ned analogously.

By de�nition we have

Lemma 2 For all f 2 F , v 2 V, O 2 O, and (o; o0) 2 SYMM: f [o $ o0] = f [o0 $ o],

v[o $ o0] = v[o0 $ o], O[o$ o0] = O[o0 $ o], f [o$ o0][o$ o0] = f , v[o$ o0][o$ o0] = v, and

O[o$ o0][o$ o0] = O.

The time complexity for checking f [o $ o0] is of order O(k(p)). By precomputing a

O(jSYMMj � jFj) sized table containing the index of f 0 = f [o $ o0] for all (o; o0) 2 SYMM,

this time complexity can be reduced to O(1).

De�nition 11 (Object Transpositions for States) An object transposition [o $ o0] applied to

state S = (Sp; Sn) 2 S with Sn = (v1; : : : ; vk), k = jVj, written as S[o $ o0], is equal to

(Sp[o$ o0]; Sn[o$ o0]) with

Sp[o$ o0] = ff 0 2 F j f 2 Sp ^ f 0 = f [o$ o0]g

and Sn[o$ o0] = (v01; : : : ; v
0

k) with vi = v0j if �
�1(i)[o$ o0] = ��1(j) for i; j 2 f1; : : : ; kg.

The time complexity to compute Sn[o$ o0] is O(k), since testing ��1(i)[o$ o0] = ��1(j) is

available in time O(1) by building another O(jSYMMj � jVj) sized precomputed look-up table.

We summarize the complexity issues as follows.

Lemma 3 The time complexity to compute S[o $ o0] for state S = (Sp; Sn) 2 S and (o; o0) 2

SYMM is O(jSpj+ jVj) using O(jSYMMj � (jFj+ jVj) space.

De�nition 12 (Object Transpositions for Domains) A planning problem P = hS;O;I;Gi is

symmetric with respect to the object transposition [o $ o0], abbreviated as P[o $ o0], if I[o $

o0] = I and for all G 2 G: G[o$ o0] 2 G.

Applying Lemma 3 for all (o; o0) 2 SYMM yields

24

Theorem 8 Assuming a description complexity O(jGpj + jVj) for the set of goals G, checking

whether a planning problem P = hS;O; I;Gi is symmetric with respect to the object transposi-

tions [o$ o0], with (o; o0) 2 SYMM can be done in time O(jSYMMj � (jGpj+ jIpj+ jVj).

Lemma 4 If operator O is applicable in S and S = S[o$ o0] then O[o$ o0] is applicable in S

and

O(S)[o$ o0] = O[o$ o0](S)

Proof: If O is applicable in S the O[o o0] is applicable in S[o o0]. Since S = S[o$ o0],

O[o$ o0] applicable in S, and

O[o$ o0](S) = O[o$ o0](S[o$ o0]) = O(S)[o$ o0]:

2

Lemma 4 indicates how symmetry will be used to reduce exploration. If a planning problem

with current state C 2 S is symmetric with respect to the operator transposition [o $ o0] then

either the application of operator O 2 O or the application of operator O[o $ o0] is neglected,

signi�cantly reducing the branching factor.

6.2 Dynamic Symmetries

One problem is that symmetries that are present in the initial state may vanish or reappear

during exploration. In the DesertRats domain, for example, the initial set of supply tanks is

indistinguishable so that only one should be loaded into the truck. Once the fuel level of the

supply tanks decrease or tanks are transported to another location, formerly existing symmetries

are broken. However, when two tanks in one location are emptied they can once more be

considered as being symmetric.

In a forward chaining planner goal conditions do not change over time, only the initial state I

transforms to the current state C. Therefore, in a precompiling phase we re�ne the set SYMM

to

SYMM
0 :=

�
(o; o0) 2 SYMM j 8 G 2 G : G[o$ o0] = G

	
:

Usually jSYMM0
j is by far smaller than jSYMMj. For the Zeno-Travel instance, the

symmetries left in SYMM0 are the ones of the location of scott and ernie.

Theorem 9 Checking whether an induced planning problem P = hS;O; C;Gi with current state

C = (Cp; Cn) 2 S is symmetric with respect to the object transpositions [o $ o0], (o; o0) 2

SYMM
0, can be performed in time O(jSYMM0

j � (jCpj+ jVj)).

Therefore, we can e�ciently compute set

SYMM
00(C) := f(o; o0) 2 SYMM0

j C[o$ o0] = Cg

of symmetries that are present in the current state. In the initial state of the example

problem of Zeno-Travel SYMM00(C) = ;, but once scott and ernie share the same location

in a state C 2 S this object pair would be included in SYMM00(C).

By precomputing a O(jSYMMj � jOj) sized table the index of operator O0 = O[o$ o0] can

be determined in time O(1) for each (o; o0) 2 SYMM0.

Let �(S) be the set of operators that are applicable in state S 2 S.

De�nition 13 The pruning set �(S;SYMM00(C)) � �(S) is de�ned as the set of all operators

that have a symmetric operator and that are not of minimal index, i.e., �(S;SYMM00(C)) =

�
O 2 �(S) j 9 O0

2 �(S) : �(O0) > �(O) and 9 (o; o0) 2 SYMM00(C) : O0 = O[o$ o0]
	
:

The symmetry reduction of �(S;SYMM00(C)) � �(S) with respect to the set SYMM00(C) is

de�ned as �(S;SYMM00(C)) = �(S) n�(S;SYMM00(C)).

25

To shorten notation, in the following we write �0(C) for �(S;SYMM00(C)) and �0(C) for

�(S;SYMM00(C)). Determining �0(C) can be performed in time O(j�(S)j), since �nding O0 =

O[o$ o0] and the indices �(O0) and �(O) are all available in constant time.

Theorem 10 Reducing the operator set �(C) to �(S;SYMM00(C)) during the exploration of

planning problem P = hS;O;I;Gi preserves completeness and sequential optimality for all ex-

panded states C.

Proof: Suppose that for some expanded state C, reducing the operator set �(C) to �0(C)

during the exploration of planning problem P = hS;O; I;Gi does not preserve completeness and

sequential optimality. Furthermore, let C be the state with this property that is maximal in the

exploration order.

Then there is a sequential plan � = fO1 : : : ; Okg in P = hS;O; C;Gi with intermediate state

sequence S0 = C; : : : ; Sk � G. Obviously, Oi 2 �(Si�1), i 2 f1; : : : ; kg. By the choice of C we

have O1 62 �0(S0). Since O1 62 �0(S0) but O1 2 �(S0) we have that O1 2 �(S0;SYMM
00(S0)).

By the de�nition of the pruning set �0(S0) there exists O0

1, �(O
0

1) > �(O1) and (o; o0) 2

SYMM
00(S0) with O0

1 = O1[o $ o0] 2 �0(S0) that is applicable in S0. By Lemma 4 we

have O0

1(S0) = S1[o$ o0].

Since P = hS;O; C;Gi = P[o $ o0] = hS;O; C[o $ o0] = C;G[o $ o0] = Gi , we have

a sequential plan O1[o $ o0]; : : : ; Ok[o $ o0] with state sequence S0[o $ o0] = S0; S1[o $

o0]; : : : ; Sk[o$ o0] = Sk that reaches the goal G.

Sequential plan objectives are devised on parameterized predicates and functions, so that any

cost function on O1[o$ o0]; : : : ; Ok[o$ o0] will be the same as on O1; : : : ; Ok. This contradicts

the assumption that reducing the operator set �(C) to �0(C) does not preserve completeness and

optimality for all C. 2

If the plan objective is de�ned on instantiated predicates and objects, it can be symmetry

breaking and to preserve optimality should be checked as an additional requirement similar to

G and I.

6.3 Symmetry Reduction in MIPS

The main purpose of the re�ned implementation in MIPS is to reduce the time for dynamic

symmetry detection from O(jSYMM0
j � (jCpj+ jVj)) to time O(jCpj+ jSYMM

0
j � jVj) by loosing

some but not all structural properties.

The key observation is that symmetries are also present in fact groups according to their

object representatives. Fact groups Gi � F , i 2 f1; : : : ; lg implicitly de�ne projections Pji of

the (propositional) planning space P by Pji = hSji;Oji;Iji;Gjii, with Sji = Gi, Iji = I \ Gi,

Gji =
S
G2G G\Gi, and Oji = f(�a; �b) 2 O j (�a [�b)\Sji 6= ;g. By construction for all S 2 S

we have exactly one fact in each group true, such that S can be partitioned into fS1; : : : ; Slg,

with Si 2 Sji, i 2 f1; : : : ; lg.

Let Ri � OBJ be the set of object representatives for group Gi. If S[o $ o0] = S then

Sji[o $ o0] = Sjj in a group Gj with representative Ri[o $ o0]. Hence, in MIPS we devise a

symmetry relation SYMM not on objects but on fact groups, i.e.

SYMM = f(i; j) j 1 � i < j � l : Ri[o$ o0] = Rjg:

Many objects, e.g. the objects of type city in ZenoTravel, were not selected as representatives

for a single attribute invariance to build a group. These were neglected in MIPS, since we

expect no symmetry on them. This reduces the set of objects OBJ that MIPS considers to

a considerably smaller subset OBJ 0 =
S
f1�i�lgRi. In the example problem jOBJ j = 7, and

jOBJ
0
j = 4.

It may also happen that more than one group has a representative o 2 OBJ 0. However, if all

uent predicates p have arity k(p) � 2, which is frequently met in the benchmark domains, all

26

jRij were equal to one for all i, so for all objects we get a �nite partitioning into representatives,

i.e. OBJ 0 = _S
i2f1;:::;lgRi.

MIPS takes this conservative assumption and may leave other symmetries uncaught. It

computes SYMM by analyzing the subproblem structures Pji, i 2 f1; : : : ; lg instead of P

itself. In case of an object symmetry [Ri $ Rj] the groups Gi and Gj necessarily have to

be isomorphic, and we can establish a bijective mapping : Pji ! Pjj with subcomponents

 S : Sji ! Sjj and O : Oji ! Ojj .

As above, static symmetries based on non-matching goal predicates were excluded, yielding a

re�nement SYMM0 of SYMM. Dynamic symmetries are detected for each expanded state S.

The current state representation is mapped to the subgraphs Pji. The list of possibly symmetric

groups SYMM0 is traversed to select pairs which obey the current instantiation. MIPS marks

the groups with larger index as visited. This guarantees that operators of at least one group are

executed. The complexity of this phase is bounded by jSpj and by SYMM0 and yields a list

SYMM
00.

Testing the propositional part Sp = (S1; : : : ; Sl) of a state S for all symmetries reduces to

test, whether S(Si) = Sj for each (i; j) 2 jSYMM0
j and can be performed in time O(jSpj +

jSYMM
0
j). The comparison of variables v 2 V is implemented as described in the previous

section such that for the numerical part Sn we check the remaining symmetries, for total time

O(jSpj+ jSYMM
0
j � jVj) to �x SYMM00 in form of visited markings.

For each expanded state S and each matching operator O 2 �(S) the algorithm checks,

whether an applied operator is present in a visited group, in which case it is pruned. The time

complexity is in O(j�(S)j), since operator group containment can be preprocessed and checked

in constant time.

7 Visualization

For visualization of plans we extended an existing animation system for our purposes.

Vega (Hipke, 2000) is implemented as a Client-Server architecture that runs a annotated

algorithm on the server side to be visualized on the client side in a Java frontend. Annotation

are visualization requests that (minorly) extend the existing source code by (simple) commands

like send point(x; y) or send circle(x; y; r). In the system visualization objects can be associated

with hierarchical structured identi�ers. The client is used both as the user front-end and the

visualization engine. Thus, it allows server and algorithm selection, input of data, running and

stopping algorithms, and customization of the visualization.

It can be used to i) manipulate scenes with hierarchically named objects | either in the

view or in an object browser that displays the object tree, ii) view algorithm lists at the server

and display algorithm information, iii) apply algorithms to selected data in a view, control the

algorithm execution using a VCR-like panel or the execution browser, iv) adjust view attributes

directly or using the object browser, show several algorithms simultaneously in multiple scenes

and open di�erent views for a single scene, and v) load and save single scenes, complete runs,

and attribute lists, export scenes in x�g or gif format.

Vega allows on-line and o�-line presentations. The main purpose of the server is to make

algorithms accessible through TCP/IP. The server is able to receive commands from multiple

clients at the same time. It allows the client to choose from the list of available algorithms, to

retrieve information about the algorithm, to specify input data, to start it and to receive output

data. The server maintains a list of installed algorithms. This list may be changed without the

need of stopping and restarting the server.

We have extended Vega with two respects, and call it Vepa for Visualization of E�cient

Planning Algorithms to emphasize the planning aspect. It can be run as an interactive applet

available at www.informatik.uni-freiburg.de/~mmips/visualization.

The �rst program that we added is VepaServer which wraps plan execution and visualizes

27

Figure 10: Visualization a Plan in Gannt Chart Format.

Gannt Charts of plans (cf. Figure 10). Gannt Charts are a well known representation for

schedules in which a horizontal open oblong is drawn against each activity indicating estimated

duration. The tool can be adapted to any planner that writes plans in planning competition

format to standard I/O. The user may choose the planner, the domain, and the problem �le.

Hence, the algorithm is fully planner independent. To avoid security con
icts in our web presen-

tation of the visualizer we have incorporated a slightly di�erent call panel that allows to select

the planner in a pull-down menu and to include domain and problem by cut and paste.

The second program (suite) is VepaDomain for domain-dependent visualization of sequen-

tial plans. Figure 10 shows an example for the Settlers domain. VepaDomain includes instance

independent visualizations for all competition domains all with less than 100 lines of code.

The �gures for the objects were collected with an image web search engine. We used Google

(cf. www.google.de) in the advanced setting to search for small GIFs. VepaDomain works in

cooperation with the MIPS system as follows. The planner writes propositional and numeric

state facets and (unscheduled) action sequences into a �le, which in turn is read by the do-

main dependent visualizer. Therefore, it is not di�cult to adapt other planners to the domain

visualizer.

8 Related Work

Solving planning problems with numerical preconditions and e�ects as allowed in Level 2 and

Level 3 problems is undecidable in general (Helmert, 2002). However, the structures of the

provided benchmark problems are simpler than the general problem class, so that these problems

are in fact solvable.

8.1 Problem Classes and Methods

According to the PDDL-hierarchy we indicate three problem classes:

1. Propositional Planning. STRIPS problems have been tackled with di�erent planning

techniques, most notably by SAT-planning, e.g. (Kautz & Selman, 1996), IP-planning,

28

Figure 11: Visualization of a Planning Problem Instance of Settlers.

e.g. (Kautz & Walser, 1999), CSP-planning, e.g. (Rintanen & Jungholt, 1999), graph re-

laxation, e.g. (Blum & Furst, 1995), and heuristic search planing, e.g. (Bonet & Ge�ner,

2001). The major quality measurements are the numbers of sequential and parallel steps.

ADL generalizations (Pednould, 1989) like conditional e�ects and negative preconditions

are more expressive in general, but can usually be resolved during grounding.

2. Numerical E�ects. Numerical variables in the e�ect lists can include time and resources.

If numerical e�ects do not bound integral values, in�nite state spaces are likely to be gen-

erated. However, by assuming �nitely many interesting events the problem class becomes

tractable and is e�ectively dealt by schedulers that usually minimize the make-span of

concurrent actions.

3. Numerical Preconditions. We distinguish �nite and in�nite branching problems. With �-

nite branching, execution time of an action is not parameterized, while with in�nite branch-

ing, an in�nite number of actions can be applied. These problems have ever since been

confronted to model checking. Some subclasses of in�nite branching problems like timed

automata exhibit a �nite partitioning through a symbolic representation of states (Petters-

son, 1999). By the technique of shortest-path reduction a unique and reduced normal form

can be obtained. We have implemented this constraint network data structure, since this

is the main data structure when exploring timed automata as done by the model checker

Uppaal (Pettersson, 1999). For this to work, all constraints must have the form xi�xj � c

or xi � c. For example, the set of constraints x4 � x0 � �1, x3 � x1 � 2, x0 � x1 � 1,

x5 � x2 � �8, x1 � x2 � 2, x4 � x3 � 3, x0 � x3 � �4, x1 � x4 � 7, x2 � x5 � 10, and

x1 � x5 � 5 has the shortest-path reduction x4 � x0 � �1, x3 � x1 � 2, x5 � x2 � �8,

x0 � x3 � �4, x1 � x4 � 7, x2 � x5 � 10, and x1 � x5 � 5. If the constraint set is

over-constraint, the algorithm will determine unsolvability, otherwise a feasible solution is

returned. The absence of partitioning is current research (Wolper & Boigelot, 1998).

Critical path analysis for timed precedence networks is one of the simpler cases for scheduling.

We have achieved a simpli�cation by solving the sequential path problem �rst. Several scheduling

techniques apply the presented critical path analyses as a subcomponent (Syslo, Deo, & Kowalik,

1983).

29

Most previously achieved results in symmetry reduction, e.g. (Gu�er�e & Alami, 2001), ne-

glect the combinatorial explosion problem and tend to assume that the information on existing

symmetries in the domain is supplied by the user. Our approach shares similarities with the

approach of (Fox & Long, 1999, 2002) in inferring symmetry information automatically, which

bases on the TIM inference module (Fox & Long, 1998). Since no additional information on the

current symmetry level in form of matrix is stored, our approach consumes less space per state.

Moreover, we can give correctness proofs and e�ciency guarantees.

8.2 Competing Planners

The on-line presentation of IPC-34 provides aspects of the input language, domains, results and

other resources, e.g links to competing planners and the history of the event. In the following we

brie
y present the successful approaches at AIPS-2002. In AIPS-1998 most successful planners

besides HSP (Bonet & Ge�ner, 2001) and Satplan (Kautz & Selman, 1996) were Graphplan

derivates, e.g. IPP (Koehler et al., 1997) and STAN (Long & Fox, 1998). In 2000, the �eld

was dominated by the success of heuristic search planning as in FF (Ho�mann & Nebel, 2001),

HSP-2 (Haslum & Ge�ner, 2000), and in some hybrids, like STAN4 (Long & Fox, 2001b), and

MIPS. System R (Lin, 2001) used backward regression.

Metric-FF (Ho�mann, 2002a) extends FF (Ho�mann & Nebel, 2001) and is a forward chain-

ing heuristic state space planner. It performed best in the numerical track and was the only

system besides MIPS that solved instances to Settlers. The main heuristic of relaxed plans

bases on the HSP-heuristic (Bonet & Ge�ner, 2001). Metric-FF deals with PDDL 2.1 level 2,

combined with ADL. The key di�erence is the de�nition of the relaxation. In STRIPS, the task

is relaxed by ignoring all delete lists. However, numerical constraints are not monotonic: while

one constraint (e.g. x > 2) might prefer higher values of a variable x, another constraint (e.g.

x < 2) might prefer lower values. Opposed to that, the conditions in the purely logical case all

prefer higher values of the propositional variables: negative conditions are compiled away as a

pre-process, and thus it is always preferable to have more propositional facts true. The obser-

vation exploited in Metric-FF is that the same methodology can be applied in the numerical

setting, at least in a subset of the language. The task is pre-processed such that all numerical

constraints are monotonic, i.e., for any constraint c, if c is true in a state S then c is true in

any state S0 where, for all variables x, x(S0) � x(S). The relaxation is then simply to ignore

all e�ects that decrease the value of the a�ected variable, and the relaxed task can be solved in

Graphplan-style. To achieve the monotonicity property, one needs, in the numerical constraints

and e�ects, expressions that are monotonic in all variables. In the current implementation,

Numerical-FF restricts to linear expressions which obviously have this property.

LPG (Local search for Planning Graphs) (Gerevini & Serina, 2002) is the only planner that

was competitive with MIPS at AIPS-2002 in the temporal domains. It bases on local search

and planning graphs that handles PDDL 2.1 domains involving numerical quantities and du-

rations. The system can solve both plan generation and plan adaptation problems. The basic

search scheme of LPG was inspired by Walksat, an e�cient procedure to solve SAT-problems.

The search space of LPG consists of action graphs (Gerevini & Serina, 1999), particular sub-

graphs of the planning graph representing partial plans. The search steps are certain graph

modi�cations transforming an action graph into another one. LPG exploits a compact repre-

sentation of the planning graph to de�ne the search neighborhood and to evaluate its elements

using a parametrized function, where the parameters weight di�erent types of inconsistencies in

the current partial plan, and are dynamically evaluated during search using discrete Lagrange

multipliers. The evaluation function uses some heuristics for estimate the search cost and the

execution cost of achieving a (possibly numeric) precondition. Action durations and numerical

quantities (e.g., fuel consumption) are represented in the actions graphs, and are modeled in the

evaluation function. In temporal domains, actions are ordered using a precedence graph that is

4http://www.dur.ac.uk/d.p.long/competition.html

30

maintained during search, and that took into account the mutex relations of the planning graph.

TP4 (Haslum & Ge�ner, 2001) is in fact a scheduling system based on grounded problem

instances. For these cases all formula trees in numerical conditions and assignments reduce to

constants. Utilizing admissible heuristics TP4 minimize the plan objective of optimal parallel

plan length. Our planner has some distinctive advantages: it handles numerical preconditions,

instantiates numerical conditions on the
y and can cope with complex objective functions.

Besides input restriction, in the competition, TP4 was somewhat limited by is focus to produce

optimal solutions only.

SAPA (Do & Kambhampati, 2001) is a domain-independent time and resource planner that

can cope with metrics and concurrent actions. It adapts the forward chaining algorithm of (Bac-

chus & Ady, 2001). Both planning approaches instantiate actions on the
y and can, therefore,

in principle be adapted to at least mixed propositional and numerical planning problems. The

search algorithm of SAPA extends partial concurrent plans. It uses a relaxed temporal planning

graph for the yet unplanned events for di�erent heuristic evaluation functions. In the compe-

tition SAPA was the only system besides MIPS that produced plans for the complex domains,

which was the only one it submitted solutions to.

8.3 Symbolic Model Checking based Planners

In the 2000 competition, two other symbolic planner took part: PropPlan (Fourman, 2000), and

BDDPlan (H�olldobler & St�or, 2000). Although they were not awarded for performance, they

show interesting properties. PropPlan performs symbolic forward breadth �rst search to explore

propositional planning problems with propositions for generalized action preconditions and gen-

eralized action e�ects. It performed well in the full ADL Micsonic-10 elevator domain (Koehler,

2000). ProbPlan is written in the Poly/ML implementation of SML and the standart C-BDD

library5. BDD-Plan bases on solving the entailment problem in the
uent calculus with BDDs.

At that time the authors acknowledged that a concise domain encoding and symbolic heuristic

search as found in MIPS provides a large space for improvements.

In the Model-Based Planner, MBP6, the paradigm of planning as symbolic model check-

ing (Giunchiglia & Traverso, 1999) has been implemented for non-deterministic planning do-

mains (Cimatti et al., 1998), which classi�es in weak, strong, and strong-cyclic planning, with

plans that are represented as complete state-action tables. For partial observable planning, ex-

ploration faces the space of belief states; the power set of the original planning space. Therefore,

in contrast to the successor set generation based on action application, observations introduce

\And" nodes into the search tree (Bertoli, Cimatti, Roveri, & Traverso, 2001b). Since the

approach is a hybrid of symbolic representation of belief states and explicit search within the

\And"-\Or" search tree, simple heuristic have been applied to guide the search. The need for

heuristics that trade information gain for exploration e�ort is also apparent need in conformant

planning (Bertoli, Cimatti, & Roveri, 2001a). Recent work (Bertoli & Cimatti, 2002) proposes

improved heuristic for belief space planning. MBP has not yet participated in a planning com-

petition, but plan to do in 2004.

The UMOP system parses a non-deterministic agent domain language that explicitly de�nes

a controllable system in an uncontrollable environment (Jensen & Veloso, 2000). The planner

also applies BDD re�nement techniques such as automated transition function partitioning. New

result for the UMOP system extends the setting of weak, strong and strong cyclic planning to

adversarial planning, in which the environment actively in
uences the outcome of actions. In

fact, the proposed algorithm joins aspects of both symbolic search and game playing. UMOP

has not participated yet in a planning competition.

More recent developments in symbolic exploration are expected to in
uence automated plan-

ning in near future. With SetA*, (Jensen, Bryant, & Veloso, 2002) provide an improved imple-

5http://www-2.cs.cmu.edu/ modelcheck/bdd.html
6http://sra.itc.it/tools/mbp

31

mentation of the symbolic heuristic search algorithm BDDA* (Edelkamp & Re�el, 1998) and

Weighted BDDA* (Edelkamp, 2001a). One major surplus is to maintain a �ner granularity of

the sets of states in the search horizon kept in a matrix according to matching g- and h- values.

This contrasts the plain bucket representation of the priority queue based on f -values. The

heuristic function is implicitly encoded with value di�erences of grounded actions. Since sets of

states are to be evaluated and some heuristics are state rather than operator dependent it has

still to be shown how general this approch is. As above the considered planning benchmarks are

seemingly simple for single-state heuristic search exploration (Ho�mann, 2002b; Helmert, 2001).

(Hansen, Zhou, & Feng, 2002) also re-implemented BDDA* and suggest that symbolic search

heuristics and exploration algorithms are probably better to be implemented with algebraic

decision diagrams (ADDs), as available in Somenzi's CUDD package. Although the authors

achieved no improvement to (Edelkamp & Re�el, 1998) to solve the (n2 � 1)-Puzzle, the estab-

lished generalization to guide a symbolic version of the LAO* exploration algorithm (Hansen &

Zilberstein, 2001) for probabilistic (MDP) planning, results in a remarkable improvement to the

state-of-the-art (Feng & Hansen, 2002).

9 Conclusions

With the competing planning system MIPS, we have contributed an object-oriented architec-

ture for a forward chaining, heuristic explicit and symbolic search planner that �nds plans in

�nite-branching numerical problems. The planner parses, pre-compiles, solves, and schedules all

current benchmark problem instances include complex ones with duration, resource variables

and di�erent objective functions.

Model checking aspects have always been in
uencing to the development of MIPS, e.g in

the static analysis to minimize the state description length, in symbolic exploration and plan

extraction, in the dependence relation for PERT schedules according to a given partial order,

in bit-state hashing for IDA*, etc. The successes of planning with MIPS were also exported

back to model checking, as the development of a heuristic search explicit-state model checker

HSF-SPIN (Edelkamp et al., 2002) indicates.

MIPS instantiates numerical pre- and postconditions on-the-
y and produces optimized par-

allel plans. Essentially planning with numerical quantities and durative actions is planning with

time and resources. The given framework of mixed propositional and numerical planning prob-

lems problems and the presented intermediate format can be seen as a normal form for temporal

and metric planning.

For temporal planning, MIPS generates sequential (totally ordered) plans and e�ciently

schedules them with respect to the set of actions and the imposed causal structure, without

falling into known NP-hardness traps for optimized partial-ordering of sequentially generated

plan. For smaller problems the enumeration approach guarantees optimal solutions. To im-

prove solution quality in approximate enumeration, the (numerical) estimate for the number of

operators was substituted by scheduling the relaxed plan in each state.

Other contributions besides the new expressivity were re�ned static analysis techniques to

simplify propositionally grounded representation and to minimize state encoding, automated

state-based dynamic symmetry detection, as well as e�ective hashing and transposition cuts.

In the main part of paper we have analyzed completeness and optimality of di�erent forms of

exploration and have given a troughout theoretical treatment of PERT scheduling and symmetry

detection, proving correctness results and studying run-time complexities.

References

Bacchus, F., & Ady, M. (2001). Planning with resources and concurrency: A forward chaning

approach. In International Joint Conference on Arti�cial Intelligence (IJCAI), pp. 417{

32

424.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge

for planning. Arti�cial Intelligence, 116, 123{191.

B�ackstr�om, C. (1998). Computational aspects of reordering plans. Journal of Arti�cial Intelli-

gence Research, 9, 99{137.

Bertoli, P., & Cimatti, A. (2002). Improving heuristics for planning as search in belief space. In

Arti�cial Intelligence Planning and Scheduling (AIPS).

Bertoli, P., Cimatti, A., & Roveri, M. (2001a). Heuristic search symbolic model checking =

e�cient conformant planning. In International Joint Conference on Arti�cial Intelligence

(IJCAI), pp. 467{472.

Bertoli, P., Cimatti, A., Roveri, M., & Traverso, P. (2001b). Planning in nondeterministic

domains under partial observability via symbolic model checking. In International Joint

Conference on Arti�cial Intelligence (IJCAI), pp. 473{478.

Biere, A. (1997). �cke - e�cient �-calculus model checking. In Computer-Aided Veri�cation

(CAV), Lecture Notes in Computer Science, pp. 468{471. Springer.

Blum, A., & Furst, M. L. (1995). Fast planning through planning graph analysis. In International

Joint Conferences on Arti�cial Intelligence (IJCAI), pp. 1636{1642.

Bonet, B., & Ge�ner, H. (2001). Planning as heuristic search. Arti�cial Intelligence.

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24 (3), 142{170.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Arti�cial

Intelligence, 165{204.

Cimatti, A., Giunchiglia, E., Giunchiglia, F., & Traverso, P. (1997). Planning via model checking:

A decision procedure for AR. In European Conference on Planning (ECP), Lecture Notes

in Computer Science, pp. 130{142. Springer.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Automatic OBDD-based generation of univer-

sal plans in non-deterministic domains. In National Conference on Arti�cial Intelligence

(AAAI), pp. 875{881.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model Checking. MIT Press.

Clarke, E. M., McMillan, K. L., Dill, D. L., & Hwang, L. J. (1992). Symbolic model checking:

1020 states and beyond. Information and Computation, 98 (2), 142{170.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. The MIT

Press.

Dial, R. B. (1969). Shortest-path forest with topological ordering. Communication of the ACM,

12 (11), 632{633.

Do, M. B., & Kambhampati, S. (2001). Sapa: a domain-independent heuristic metric temporal

planner. In European Conference on Planning (ECP), pp. 109{120.

Edelkamp, S. (2001a). Directed symbolic exploration and its application to AI-planning. In

AAAI-Spring Symposium on Model-based Validation of Intelligence, pp. 84{92.

Edelkamp, S. (2001b). First solutions to PDDL+ planning problems. In Workshop of the UK

Planning and Scheduling Special Interest Group (PlanSIG), pp. 75{88.

Edelkamp, S. (2001c). Planning with pattern databases. In European Conference on Planning

(ECP). 13-24.

Edelkamp, S. (2002a). Mixed propositional and numerical planning in the model checking inte-

grated planning system. In International Conference on AI Planning & Scheduling (AIPS),

Workshop on Temporal Planning.

33

Edelkamp, S. (2002b). Symbolic pattern databases in heuristic search planning. In Arti�cial

Intelligence Planning and Scheduling (AIPS).

Edelkamp, S., & Helmert, M. (1999). Exhibiting knowledge in planning problems to minimize

state encoding length. In European Conference on Planning (ECP), Lecture Notes in

Computer Science, pp. 135{147. Springer.

Edelkamp, S., & Helmert, M. (2000). On the implementation of MIPS. In Arti�cial Intelligence

Planning and Scheduling (AIPS){Workshop on Model Theoretic Approaches to Planning,

pp. 18{25.

Edelkamp, S., & Helmert, M. (2001). The model checking integrated planning system MIPS.

AI-Magazine, 67{71.

Edelkamp, S., Leue, S., & Lluch-Lafuente, A. (2002). Directed explicit-state model checking in

the validation of communication protocols. International Journal on Software Tools for

Technology (STTT).

Edelkamp, S., & Meyer, U. (2001). Theory and practice of time-space trade-o�s in memory

limited search. In German Conference on Arti�cial Intelligence (KI), Lecture Notes in

Computer Science, pp. 169{184. Springer.

Edelkamp, S., & Re�el, F. (1998). OBDDs in heuristic search. In German Conference on

Arti�cial Intelligence (KI), pp. 81{92.

Edelkamp, S., & Re�el, F. (1999). Deterministic state space planning with BDDs. In European

Conference on Planning (ECP), Preprint, pp. 381{382.

Edelkamp, S., & Stiegeler, P. (2002). Implementing HEAPSORT with n log n�0:9n and QUICK-

SORT with n logn+ 0:2n comparisons. ACM Journal of Experimental Algorithmics.

Feng, Z., & Hansen, E. (2002). Symbolic heuristic search for factored markov decision processes.

In National Conference on Arti�cial Intelligence (AAAI).

Fikes, R., & Nilsson, N. (1971). Strips: A new approach to the application of theorem proving

to problem solving. Arti�cial Intelligence, 2, 189{208.

Fourman, M. P. (2000). Propositional planning. In Arti�cial Intelligence Planning and Schedul-

ing (AIPS)-Workshop on Model-Theoretic Approaches to Planning, pp. 10{17.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM. Arti�cial

Intelligence Research, 9, 367{421.

Fox, M., & Long, D. (1999). The detection and exploration of symmetry in planning problems.

In International Joint Conferences on Arti�cial Intelligence (IJCAI), pp. 956{961.

Fox, M., & Long, D. (2001). PDDL2.1: An extension to PDDL for expressing temporal planning

domains. Tech. rep., University of Durham, UK.

Fox, M., & Long, D. (2002). Extending the exploitation of symmetries in planning. In Arti�cial

Intelligence Planning and Scheduling (AIPS).

Gerevini, A., & Serina, I. (1999). Fast planning through greedy action graphs. In National

Conference of Arti�cial Intelligence (AAAI).

Gerevini, A., & Serina, I. (2002). LPG: a planner based on local search for planning graphs with

action costs. In Arti�cial Intelligence Planning and Scheduling (AIPS).

Giunchiglia, F., & Traverso, P. (1999). Planning as model checking. In European Conference on

Planning (ECP), pp. 1{19.

Gu�er�e, E., & Alami, R. (2001). One action is enough to plan. In International Joint Conference

on Arti�cial Intelligence (IJCAI).

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that �nds solutions

with loops. Arti�cial Intelligence, 129, 35{62.

34

Hansen, E. A., Zhou, R., & Feng, Z. (2002). Symbolic heuristic search using decision diagrams.

In Symposium on Abstraction, Reformulation and Approximation (SARA).

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for heuristic determination

of minimum path cost. IEEE Transactions on on Systems Science and Cybernetics, 4,

100{107.

Haslum, P., & Ge�ner, H. (2000). Admissible heuristics for optimal planning. In Arti�cial

Intelligence Planning and Scheduling (AIPS), pp. 140{149.

Haslum, P., & Ge�ner, H. (2001). Heuristic planning with time and resources. In European

Conference on Planning (ECP), pp. 121{132.

Helmert, M. (2001). On the complexity of planning in transportation domains. In European

Conference on Planning (ECP), Lecture Notes in Computer Science, pp. 349{360. Springer.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical state

variables. In Arti�cial Intelligence Planning and Scheduling (AIPS).

Hipke, C. A. (2000). Verteilte Visualisierung von Geometrischen Algorithmen. Ph.D. thesis,

University of Freiburg.

Ho�mann, J. (2000). A heuristic for domain independent planning and its use in an enforced hill

climbing algorithm. In ISMIS, Lecture Notes in Computer Science, pp. 216{227. Springer.

Ho�mann, J. (2002a). Extending FF to numerical state variables. In European Conference on

Arti�cial Intelligence.

Ho�mann, J. (2002b). Local search topology in planning benchmarks: A theoretical analysis. In

Arti�cial Intelligence Planning and Scheduling (AIPS).

Ho�mann, J., & Nebel, B. (2001). Fast plan generation through heuristic search. Arti�cial

Intelligence Research, 14, 253{302.

H�olldobler, S., & St�or, H.-P. (2000). Solving the entailment problem in the
uent calculus

using binary decision diagrams. In Arti�cial Intelligence Planning and Scheduling (AIPS)-

Workshop on Model-Theoretic Approaches to Planning, pp. 32{39.

Jensen, R. M., Bryant, R. E., & Veloso, M. M. (2002). SetA*: An e�cient BDD-based heuristic

search algorithm. In National Conference on Arti�cial Intelligence (AAAI).

Jensen, R., & Veloso, M. M. (2000). OBDD-based universal planning for synchronized agents

in non-deterministic domains. Arti�cial Intelligence Research, 13, 189{226.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reachtive agents.

Arti�cial Intelligence, 95 (1), 67{113.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning propositional logic, and stochas-

tic search. In National Conference on Arti�cial Intelligence (AAAI), pp. 1194{1201.

Kautz, H., & Walser, J. (1999). State-space planning by integer optimization. In National

Conference on Arti�cial Intelligence (AAAI).

Knoblock, C. (1994). Generating parallel execution plans with a partial order planner. In

Arti�cial Intelligence Planning and Scheduling (AIPS), pp. 98{103.

Koehler, J. (2000). Elevator control as planning problem. In Arti�cial Intelligence Planning and

Scheduling (AIPS), pp. 331{338.

Koehler, J., Nebel, B., & Dimopoulos, Y. (1997). Extending planning graphs to an adl subset.

In European Conference on Planning (ECP), pp. 273{285.

Korf, R. E. (1985). Depth-�rst iterative-deepening: An optimal admissible tree search. Arti�cial

Intelligence, 27 (1), 97{109.

Lago, U. D., Pistore, M., & Traverso, P. (2002). Planning with a language for extended goals.

In National Conference on Arti�cial Intelligence (AAAI).

35

Lin, F. (2001). System r. AI-Magazine, 73{76.

Lind-Nielsen, J. (1999). Buddy: Binary decision diagram package, release 1.7. Technical Uni-

veristy of Denmark. jln@itu.dk.

Long, D., & Fox, M. (1998). E�cient implementation of the plan graph in STAN. Arti�cial

Intelligence Research, 10, 87{115.

Long, D., & Fox, M. (2001a). Encoding temporal planning domains and validating temporal

plans. InWorkshop of the UK Planning and Scheduling Special Interest Group (PlanSIG).

Long, D., & Fox, M. (2001b). Hybrid stan: Identifying and managing combinatorial optimisation

sub-problems in planning. In International Joint Conference on Arti�cial Intelligence

(IJCAI), pp. 445{452.

McDermott, D. (2000). The 1998 AI Planning Competition. AI Magazine, 21 (2).

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Press.

Pearl, J. (1985). Heuristics. Addison-Wesley.

Pednault, E. P. D. (1986). Formulating multiagend, dynamic-world problems in the classical

framework. In Reasoning about Action and Plans, pp. 47{82. Morgan Kaufmann.

Pednould, E. (1989). ADL: Exploring the middleground between Strips and situation calculus.

In Knowledge Representation (KR), pp. 324{332. Morgan Kaufman.

Pettersson, P. (1999). Modelling and Veri�cation of Real-Time Systems Using Timed Automata:

Theory and Practice. Ph.D. thesis, Department of Computer Systems, Uppsala University.

Pistore, M., & Traverso, P. (2001). Planning as model checking for extended goals in non-

deterministic domains. In International Joint Conference on Arti�cial Intelligence (IJ-

CAI).

Pohl, I. (1977). Practical and theoretical considerations in heuristic search algorithms. Machine

Intelligence, 8, 55{72.

Re�el, F., & Edelkamp, S. (1999). Error detection with directed symbolic model checking. In

World Congress on Formal Methods (FM), pp. 195{211.

Regnier, P., & Fade, B. (1991). D�etermination du parall�elisme maximal et optimisation tem-

porelle dans les plans d'actions lin�eaires. Revue d'intelligence arti�cielle, 5 (2), 67{88.

Reinefeld, A., & Marsland, T. (1994). Enhanced iterative-deepening search. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16 (7), 701{710.

Rintanen, J., & Jungholt, H. (1999). Numeric state variables in constraint-based planning. In

European Conference on Planning (ECP), Lecture Notes in Computer Science, pp. 109{

121. Springer.

Syslo, M. M., Deo, N., & Kowalik, J. S. (1983). Discrete Optimization Algorithms with Pascal

Programs. Prentice-Hall.

Veloso, M. M., P�erez, M. A., & Carbonell, J. G. (1990). Nonlinear planning with parallel resource

allocation. In Innovative Approaches to Planning, Scheduling and Control, pp. 207{212.

Wolper, P., & Boigelot, B. (1998). Verifying systems with in�nite but regular state spaces. In

Conference on Computer Aided Veri�cation (CAV), Lecture Notes in Computer Science,

pp. 88{97. Springer.

36

