

Scheduling in a Virtual Enterprise
in the Service Sector

Florian Kandler

Electronic Commerce Competence Center, Donau-City-Strasse 1, 1070 Vienna, Austria
florian.kandler@ec3,at
http://www.ec3.at/

Abstract. The work described in this paper presents an approach on scheduling
in a virtual enterprise in the tourism sector. This scheduling scenario has to rec-
oncile customers’ and service providers’ interests. That is, the customer’s tem-
poral constraints on when to consume the service, and the service provider’s
preferences on when to accept a booking. An algorithm is being developed for
this situation, that incorporates both sides’ interests by first taking the custom-
ers restrictions, and then finding the highest preferred solution for the service
provider within these limits. This is not done in a setting of competing agents
each solving his local problem [1], but in a single composite problem that is
solved by the virtual enterprise using the algorithm presented in this paper.
The research described in this paper is part of the MOVE (Management and
Optimization of Business Processes in Virtual Enterprises) Project of the Elec-
tronic Commerce Competence Center in Austria, whose ultimate goal is to de-
velop a reference implementation of a virtual enterprise in the tourism sector,
where the field of tourism is just one scenario where we want to try and prove
our ideas and findings for the more general field of virtual enterprises in the
service sector.

1 Introduction

The work presented here is part of the development of a virtual enterprise system in
the tourism sector [3]. As a whole system, the virtual enterprise shall enable the dis-
tributed community of service providers in the tourism sector to jointly achieve higher
sales by using internet technology. Therefore, the disperse scheduling that happens at
every service provider locally for bookings that are received via traditional means like
phone and fax is integrated into the virtual enterprise system to support ad hoc infor-
mation about available services and booking for the customer. The virtual enterprise
will support the customer in assembling his individual holiday package by offering
advice and suggesting services, based on the customer’s profile and previous book-
ings, as well as helping him to find the best and cheapest offer. The work presented in
this paper logically follows this process of holiday package definition, taking those
decision as given, and suggesting a scheduling algorithm that reconciles these cus-
tomer wishes with the preferences of the service providers with respect to their current
booking situation.

All together, the presented algorithm that is used in the virtual enterprise is part of
the automated scheduler, that enables the system to offer the customer the swift replies
needed in the e-marketplace. On the other hand, this algorithm plays a central role in
supporting the service providers to assert their preferences.

2 Problem description

This paper will examine the scheduling problem in a virtual enterprise in the tourism
sector. The basic functionality of the virtual enterprise to the customer shall be to offer
a one-face-to-the-customer service. That is, the customer can browse through a collec-
tion of all the offered services of a large set of service providers that participate in the
virtual enterprise. Above that, the virtual enterprise will support the customer in find-
ing the best and cheapest offers.

To the service provider, the virtual enterprise offers a matching and sales function-
ality, e.g. the virtual enterprise routes customers’ service requests to the appropriate
service providers. Furthermore, the virtual enterprise actively endorses service provid-
ers’ interests and preferences, e.g. preferred booking times, preferred customers, etc.
and supplies the service providers with aggregate information of customers’ demands.

So, the virtual enterprise takes a reconciliation function between the interests of
customers and service providers. This has to be incorporated into the scheduling algo-
rithms.

3 Scheduling in a Virtual Enterprise

3.1 Basic scheduling procedure in the Virtual Enterprise

As outlined above, the Virtual Enterprise in our tourism scenario shall offer a one-
face-to-the-customer approach that enables the customer to assemble a complete holi-
day package. That is, an arbitrary composition of different kinds of services will be
assembled by the customer. The overall problem will break down into two layers of
scheduling problems. On the upper layer, the scheduler will have to find a sequence of
the selected services that is feasible and meets the customer’s requirements. On the
lower layer, that is concerned with the individual schedules of the service providers,
the services have to be scheduled into these individual schedules. Obviously, those
two scheduling layers cannot be considered independently, but have to be resolved
hand in hand to result in a global, feasible, and customer-satisfying schedule.

O R

L2

L3

L1

0 10 20 30 40

time

0 10 20 30 40

time

x3x2x1 x4R1

x6x5R2 x7 x8

L2

upper level

lower level

Figure 1 Two-layer scheduling problem

Take a look at the upper part of Figure 1. In this example of an upper level schedule,
the customer has chosen an outward flight O and a return flight R, which mark the
timeframe for his holiday stay. Between those two operations, the customer wishes to
attend three different kinds of leisure activities L1, L2 and L3 in an arbitrary se-
quence. All three of them shall be carried out in the same timeframe, sometime be-
tween arrival and departure, and must not overlap. All three activities have a prede-
fined duration. But while L2 and L3 can start any time, L1 can only be carried out
within some predefined timeslots. In the figure above, the timeslots where activity L1
can be carried out are the solid lines between the vertical lines (plus the slot where L1
is temporarily scheduled), while the time spans where the service is not offered are
represented by the dashed lines. The scheduler now has to find feasible sequences, i.e.
a schedule for those operations within the given constraints. A feasible solution is
already shown in Figure 1.

Now the scheduler can check with the service providers’ schedules on whether
there still is available space for the respective services at these times. As an example,
the lower part of Figure 1 shows the lower level schedule of a service provider for
activity L2. As can be seen, this service provider offers two resources R1 and R2 for
this service, on which bookings are accepted. The boxes labeled x1 through x8 are
other customers’ reservations that were done previously. In this case, the desired
booking of L2 is still possible on R1.

For every operation in the upper level schedule (i.e. O, R, L1, L2, L3), the sched-
uler has to check with the respective lower level schedule for booking possibility.
Only then, the upper level schedule is valid in the way that besides fulfilling all cus-

tomer wishes and restrictions, it could actually also be booked in that way with the
service providers.

The idea now is to get all the relevant lower-level schedule information first, and

integrate it into one composite scheduling problem, rather then first generating a fea-
sible upper level schedule and then querying the lower level schedules on whether
they still offer available space for that times. To do that, we suggest the following
procedure that are based on the assumption of real-time interoperability, i.e. a perma-
nent data connectivity between the virtual enterprise system and service providers, as
done in other work like [2]:

Figure 2 Sequence of a smart two-level scheduler

The integration of lower-level information into the upper-level scheduling problem
yields the following, integrated scheduling problem:

O R

L2

L3

L1

0 10 20 30 40

time

Figure 3 Composed single scheduling problem

The gray areas show the timeframes within which the respective operations can still be
scheduled in the lower-level schedules. On the search for feasible solutions, the upper-
level scheduler can move the respective operations back or forth within those gray
areas. Until now we have assumed that service providers are indifferent about when to
accept a booking, as long as scheduling takes place within the gray areas, i.e. the still
available timeslots.

Proceeding one step further from here, we can now incorporate service providers’
preferences. The desired result is to replace the plain gray areas with preference func-
tions that assigns a preference value to each point of time of the available timeslots,
representing the service providers’ desire to receive a booking for that point of time.

1 receive to-be-scheduled operations O, R, L1, L2, L3
2 fetch needed parts of lower-level schedules
3 merge schedules
4 generate a feasible schedule

3.2 Preferences

We assume the service provider’s desired goal to be a full utilization of his resources.
Therefore we link the preference function to the booking status, i.e. the number of still
available resources at a given point in time. So the first step is to generate a function
that represents this availability over the lapse of time.

With respect to this, we can distinguish two kinds of services. Those where indi-
vidual bookings are done for points in time and do not overlap in time; and those
where bookings can be done anytime, maybe even for an arbitrary duration, and hence
potentially overlap in time on the different resources.

An example for the first case would be theater seats. It is easy to generate the avail-
ability function for this case. For each of the bookable points in time, the number of
still available resources is added up, thus generating a discrete availability function
over the lapse of time, as depicted in Figure 4:

0 10 20 30 40

time

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3

50
Figure 4 Discrete availability function

Let us say we are now at time zero in the figure above. A customer wishes to consume
this service provider’s service. He is indifferent about when to consume it, as long as
it is sometime between time five and sixty. The exemplary service provider could
prefer to schedule this customer in a slot at time forty over scheduling him in the last
remaining slot at time fifty. The reason for that being, that if the customer was booked
for the last spot at time fifty, and later another customer wishes to consume the ser-
vice, but restricts his whish to only the slot at time fifty, the service provider would
lose this second customer. If he had booked the first customer into a slot at time forty,
he could have also served the second customer by booking him for the slot at time
fifty, without penalizing the first customer.

To sum it up, the service provider could prefer booking customers into less booked
times, over times where there already are plenty of reservations. Therefore, we could
deduce a preference-function from Figure 4 that would basically look exactly like the
availability function. Each possible timeslot t in the schedule for service S is given a
preference value V. The preference-function then looks like this:

VtpS =)(

In the example above, given

}50,40,30,20,10{=t

the functional values are

}1,3,0,2,1{=V

The second category of services are those where services on different resources over-
lap in time. Such services generate continuous availability functions. We will now
focus on this tougher situation of overlapping bookings and present our algorithm for
solving that problem.

Our solution is a dynamic approach. To find the available timeslots for every point in
time, we have to take the already scheduled operations from their assigned resources
and reassign them – that is, we potentially shift them to other resources, but don’t
move them back or forth on the time axis. By doing so, we want to maximize the
available gaps between already scheduled services.

The rules for this algorithm are the following:

0a put all operations into the repository
0b consecutively number the resources, starting with number 1

1 take the operation from the repository with the earliest start time
2 put the operation on the resource with the lowest possible number
3 renumber the resources:
3a all resources with numbers up to the number of the resource the last operation has been put onto
3b the resource with the operation with the latest finish time gets number one, etc.
4 go to step #1
Figure 5 Rules of the dynamic approach

Let us go through that procedure by means of a new example and a couple of figures.
Before the procedure starts, all operations are taken out of the schedule and put into a
repository with no order (step #0b in Figure 5).

repository

x8

x3 x7

x4

x10

x12

x5

x6

x9

x11

x13

x14

x15

x16

0 10 20 30

time

R1

R2

R3

40 50

R4

1

2

3

4

60

x2

x1

1

2

Figure 6 Reassigning the consecutive numbering (step #3 of the rules)

At the top of Figure 6 we can see the repository with the operations initially placed in
it. We have taken them off the resources, but kept their position in time. The opera-
tions are numbered consecutively according to their starting times. That is, x1 has the
earliest starting time, all the way through to x16 with the latest starting time.

We have chosen an example with operations of standardized durations. But the
considerations are also fully valid for operations with variable durations.

According to step #0b, we consecutively number the resources. As can be seen in
Figure 6, each resource, R1 through R4, has two horizontal lines. The upper line will
be the line to place the operations on. On the lower line we will place balls with num-
bers in them, that show this consecutive ordering of the resources that is needed for
the algorithm.

Following step #1 from the rules, we first take the operation with the earliest start-
ing time from the repository – that is x1. Step #2 tells us to put that operation on the
first available resource, starting with the lowest resource number. Since all resources
are still completely free, we place operation x1 on resource R1.

Steps #3a and 3b only really have an effect if we had to place an operation on an-
other resource but the one with the lowest number. So lets skip those steps for now.
That brings us to step #4, which basically just tells us to loop back to step #1.

Figure 6 actually shows the situation of our example for the second loop. We have
taken operation x2 from the repository, and had to put it on R2, because it overlapped
with x1 on R1. So let’s now examine step #3 of the rules. According to step #3a, we
have to consider renumbering all resources with numbers lower or equal to the one we
have put the last operation on. The last operation, x2, was put on R2, which has the
number 2. So we will regard resources with numbers 1 and 2, which are resources R1
and R2.

Step #3b instructs us to find that one resource among the considered ones, that
holds the operation with the latest finish time, and assign it the new number 1 – that is
resource R2. Still in step #3b, we continue looking for the resource with the operation
with the second latest finish time – that is resource R1, to which we assign the new
number 2. Now we are done, and loop back to step #1. If we proceed following these
rules, we complete our procedure with the result as seen in Figure 7. The upper part
shows the final schedule that maximized the free time gaps. The lower part depicts the
time gaps that are bigger than the to-be-scheduled operation.

2

1

2

1

2

1

0 10 20 30

time

x8R1 x3

R2 x7x4

x1

R3

x10

x12

40 50

x5 x6

x9 x11

R4

1

2

3

4

x2

1

2

3 1

2

3

x13

1

2

3 1

3

2

x14

1

2

3

4

x15

x16

60

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3

4

10 20 30

time

40 50 600

R4

R3 R1 R3

R2

R3

R1

1

2 1

2 1

2 1

2

1

2 1

2

Figure 7 The schedule completion

3.3 The preference function

For a continuous preference function, we want to convert the availability function. We
do that by evaluating every point in time of the availability function with respect to the
quality of this position for being the starting time of the to-be-scheduled operation.
This evaluation follows the single rule, that the quality of a position is determined by
the minimum available resources within the time span of the operation. To illustrate
this procedure, the following figures show the process of creating the preference func-
tion:

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3

4

10 20 30

time

40 50 600

pr
ef
er
en
ce

va
lu
e

0

1

2
3

4

10 20 30

time

40 50 600

to-be
scheduled

Figure 8 Step one

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3
4

10 20 30

time

40 50 600

pr
ef
er
en
ce

va
lu
e

0

1

2
3
4

10 20 30

time

40 50 600

to-be
scheduled

Figure 9 Step two

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3
4

10 20 30

time

40 50 600

pr
ef
er
en
ce

va
lu
e

0

1

2
3

4

10 20 30

time

40 50 600

to-be
scheduled

Figure 10 Step three

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3
4

10 20 30

time

40 50 600

pr
ef
er
en
ce

va
lu
e

0

1

2
3
4

10 20 30

time

40 50 600

to-be
scheduled

Figure 11 Step four

Starting with Figure 8, the to-be-scheduled operation is moved along the time axis.
Following the mentioned rule, this procedure generates the preference function. Fig-
ures 8 through 11 show the to-be-scheduled operation at transition points of the avail-
ability function that affect the preference value. E.g. in Figure 9, there is a transition
from two to one available resource at the end of the to-be-scheduled operation in its
current position. According to the rule, this results in a preference value of one, start-
ing at the time point at the beginning of the to-be-scheduled operation. In Figure 10,
the to-be-scheduled operation again only spans parts of the available resource function
with two available resources. Thus, the preference value skips back to a value of two.

The final preference function can then be seen in Figure 12.

av
ai
la
bl
e

re
so
ur
ce
s

0

1

2
3

4

10 20 30

time

40 50 600

pr
ef
er
en
ce

va
lu
e

0

1

2
3

4

10 20 30

time

40 50 600

Figure 12 Final preference function

To sum up, for each point in time t, the function represents the quality of the position
of the to-be-scheduled operation with starting time equal to t. The ranges of the pref-
erence function with value zero denote ranges where the service cannot be scheduled.

4 Conclusion and outlook

Feeding the preference functions into the upper-level scheduler, it can now try to find
a schedule that maximizes the overall total of preference-values of all involved service
providers. Let S be the involved services that are to be scheduled, n the number of
involved services, t the scheduled time of a service, and p the preference-function of a
service, then we can formalize the goal of the upper-level scheduler to be:

)(max
1
∑

=

n

i
iS tp

i

The result of all the concepts we have presented so far is one integrated scheduling
problem that is solved to maximize the overall service providers’ preferences. The
customer defines his desired set of services with some restrictions with respect to
ordering and times. The scheduler fetches the preference function for the considered
timeframe from each service provider, upon which he then generates the optimal
schedule.

Herewith, we have presented the basics for solving a scheduling problem in a vir-
tual enterprise in the service sector with it’s specific requirements to satisfy the service
providers’ interests with respect to their occupancy situation. An algorithm has been
presented that returns a preference value based on a given schedule and a to-be-
scheduled operation.

The next step will be to find the best algorithm, that uses the preference values to
generate a schedule that maximizes the sum of the service providers’ preference val-

ues. In future research, we will also elaborate on different kinds of service provider
preferences, as well as concepts for easing up the tight restriction of not being allowed
to move previously scheduled services back and forth in time.

Later, the concepts will be integrated in our touristic virtual enterprise system, that
is being developed here in the EC3 MOVE (Management and Optimization of Busi-
ness Processes in Virtual Enterprises) project as a scenario to try and prove our ideas
and findings for the general field of virtual enterprises.

References

1. Larson, K., Sandholm, T.: Bargaining with Limited Computation: Deliberation Equilibrium.
National Conference on Artificial Intelligence, Austin, TX (2000)

2. Camarinha-Matos, L. M., Afsarmanesh, H., Garita, C., Lima, C.: Towards an Architecture
for Virtual Enterprises. 2nd World Congress on Intelligent Manufacturing Processes & Sys-
tems, Budapest (1997)

3. Kandler, F.: MOVE, Management and Optimization of Business Processes in Virtual Enter-
prises, Cooperation in a Virtual Enterprise in the Service Sector EC3 (2001); Requirements
for a Virtual Enterprise in the Service Sector EC3 (2001); Conception of a Virtual Enter-
prise in the Service Sector EC3 (2001).

