
OCLGraph : Exploiting Object Structure in a Plan
Graph Algorithm

R. M. Simpson, T. L. McCluskey and D. Liu 1

Abstract. In this paper we discuss and describe preliminary results
of integrating two strands of planning research - that of using plan
graphs to speed up planning, and that of using object representations
to better represent planning domain models. To this end we have de-
signed and implemented OCL-graph, a plan generator which builds
and searches an object-centred plan graph, extended to deal with con-
ditional effects.

1 Introduction

This paper describes work that is part of a continuing effort to evalu-
ate the impact of modelling planning domains in an object-centred
way, using a family of planning-oriented domain modelling lan-
guages known as OCL [10]. The benefit is seen as twofold: (a) to
improve the planning knowledge acquisition and validation process
(b) to improve and clarify the plan generation process in planning
systems. With regard to (b), it is our belief that certain obstacles and
problems that researchers into planning algorithms encounter can be
alleviated using a rich, planning-oriented knowledge representation
language.

The object-centred language OCL, and more recently the hier-
archical version OCLh [8, 9], have their roots in the ‘sort abstrac-
tion’ ideas used in the domain pre-processing work of [12]. OCL is
primarily aimed as a high level language for planning domain mod-
elling, the main feature distinguishing it from STRIPS-languages be-
ing that models are structured in terms of objects, rather than literals.
It aims to allow modellers to more easily capture and reason about
planner domain encodings independent of planning architecture, and
to help in the validation and maintenance of domain models. On the
other hand, OCL retains all the flexibility of a STRIPS-like encod-
ing. The rationale behind OCL has been sustained by the experience
of those applying planning technology. For example, the developers
of the planner aboard Deep Space 1 [11] stress the need to develop
clean, planner-independent languages that can be used to build and
statically validate domain models.

In this paper we seek to tie up the advantages in creating a domain
model in OCL with the use of a particularly successful form of plan
generation using a plan graph algorithm called Graphplan [2]. The
plan graph has been used as the basis for many experimental plan-
ning systems, and was the the basis of most of the planners in the
AIPS-98 planning competition. This paper describes our investiga-
tion into the use of an object-centred plan graphin a Graphplan-like
planning algorithm. Parallel work [9, 6] is investigating the use of
OCL in traditional plan-space search algorithms. The current effort
is therefore part of a larger project to implement many of the best

1 Department of Computing Science University of Huddersfield, UK
r.m.simpson@hud.ac.uk t.l.mccluskey@hud.ac.uk d.liu@hud.ac.uk

regarded planning algorithms in a manner both to process planning
problems expressed in OCL and to develop the algorithms in a man-
ner to take advantage where possible of the additional information
content of OCL models.

After introducing the reader to OCL and Graphplan, we detail the
design of a planner which draws from Graphplan in algorithmic de-
tails, and from OCL for its representation. We argue that the ‘object-
graph’ algorithm embedded in OCL-graph is conceptually simpler
than the corresponding literal-based algorithm. Also we have ex-
tended the algorithm to deal with conditional effects using a strat-
egy similar to that used by [7] and to the factored expansion strategy
described by [1].

Our results suggest that the use of OCL (i) simplifies the plan
graph: proposition levels become object levels where it is implicit
that an object can only be in one ‘substate’ at one time (ii) simplifies
the detection of ‘mutex’ relations and (iii) provides a surprisingly
natural way of dealing with conditional effects. Finally, our initial
implementations using tests from standard toy benchmark domains
suggest that there may be costs as well as benefits involved in using
a rich domain model with existing planning technology.

2 Foundations of OCL

2.1 Overview

In OCL the world is populated with objects each of which exists in
one of a well defined set of states (called ‘substates’), where these
substates are characterised by predicates. On this view an operator
may, if the objects in the problem domain are in some minimal set of
substates, bring about changes to the objects in the problem domain.
The application of an operator will result in some of the objects in the
domain moving from one substate to another. In addition to describ-
ing the operators in the problem domain OCL provides information
on the objects, their object class hierarchy and the permissible states
that the objects may be in. The main advantage of the OCL concep-
tion of planning problems to algorithms is that they do not need to
treat propositions as fully independent entities rather they now be-
long to collections that can be manipulated as a whole. So instead
of dealing with propositions the algorithms deal with objects (typi-
cally fewer objects than propositions). This is a type of abstraction
which we believe most naturally co-insides with domain structure.
It provides opportunities to improve on existing planning algorithms
by adapting them to operate at the object level rather than the propo-
sitional level.



2.2 Basic Formulation

A domain modeller using OCL aims to construct a model of the do-
main in terms of objects, a sort hierarchy, predicate definitions, sub-
state class definitions, invariants, and operators. Predicates and ob-
jects are classed as dynamic or static as appropriate - dynamic pred-
icates are those which may have a changing truth value throughout
the course of plan execution, and dynamic objects (grouped into dy-
namic sorts) are each associated with a changeable state. Each object
belongs to a unique primitive sorts, where members of s all behave
the same under operator application. In what follows we will explain
those parts of OCL sufficient for the rest of the paper, the interested
reader is referred to the bibliography for more information.

An ‘object description’ in a planning world is specified by a triple
(s; i; ss), where i is the object’s identifier, s is the objects primitive
sortand ss is its substate - a set of ground dynamic predicates which
all refer to i. All predicates in ss are asserted to be true under a
locally closed world assumption.

As a running example we will use a version of the Briefcase World,
as this is simple and has been used in [1] as the basis of their discus-
sion on the implementation of conditional effects in ‘Graph Plan’.
Note that, however, this does not illustrate the full benefits of an
OCL encoding as the briefcase world is structurally simple. Dynamic
objects in a briefcase world could be of sort bag (identifiers brief-
case,suitcase,..) or of sort thing (identifiers cheque,dictionary,suit,..),
and static objects may be of sort location (identifiers home,office ..).
Two examples of objects description are

(thing,cheque,[at_thing(cheque,home),
inside(cheque,briefcase),
fits_in(cheque,briefcase)])

(bag,briefcase,[at_bag(briefcase,home)])

A world state is a complete set of object descriptions for all the
dynamic objects in the planning application, and is usefully viewed
as a total mapping between object identifiers and their correspond-
ing substates, as an identifier is allowed to be associated with ex-
actly one substate. States are constrained by invariants. These de-
fine the truth value of static predicates and the relationships between
dynamic predicates. In particular they are used to record inconsis-
tency constraints. A world state that satisfies the invariants is called
well-formed.

For each sort s, the domain modeller groups a sort’s substates to-
gether, specifying each group with a set of predicates called a sub-
state class definition. They form a complete, disjoint covering of
the space of substates for objects of s. When fully ground, a sub-
state class definition forms a legal substate. To ensure that any le-
gal ground instantiation of a substate class definition gives a legal
substate, definitions usually contain static predicates. The substate
class definitions for the dynamic sorts thing and bag in the briefcase
world are:

substate_classes(thing,
[at_thing(Thing,Location),
inside(Thing,Bag),fits_in(Thing,Bag)],

[at_thing(Thing,Location),outside(Thing)])
substate_classes(bag,

[at_bag(Bag,Location)])

meaning that a thing can only be either at a location and in a bag that
it fits into or that it is at a location but is not in any bag, and a bag
must be positioned at a location. If i is a variable or an object identi-
fier of sort s, and se is a set of predicates, then (s; i; se) is called an

object expression if there is a legal substitution t such that it = j

and set � ss, for at least one object description (s; j; ss). The third
component of an object expression is thus called a substate expres-
sion. Also, we define an object class expression (s; i; ce) to be an
object description that may contain variables and static predicates
in ce. When ground therefore, an object class expression becomes a
valid object description if the static predicates it may contain are true
in the domain model.

A planning task is defined by a well-formed world state, and a
goal consisting of any legal mapping of object identifiers to substate
expressions i.e. a goal is a set of object expressions with distinct ob-
jects identifiers.

2.3 Operator Representation

An object transition is an expression of the form (s; i; se ) ce)
where i is a dynamic object identifier or a variable of sort s, and se

and ce are such that (s; i; se) is an object expression and (s; i; ce) is
an object class expression. If cc is an object transition, then we use
the notation cc:lhs and cc:rhs to refer to se and ce respectively.

An action in a domain is represented by operator schema O with
the following components: O:id, an operator’s identifier; O:prev,
the prevail condition consisting of a set of object expressions; O:nec,
the set of necessary object transitions; and O:cond, the set of (con-
ditional) object transitions. Each expression in O:prev must be true
before execution of O, and will remain true throughout operator exe-
cution. In the briefcase world we have operators put in, take out and
move. The put in operator will have a prevail section which allows
us to specify that the bag is at a location L but this does not change as
a result of applying the operator. The necessary section specifies that
the thing must be at the same location as the bag and must be outside
all containers prior to the application of the operator but as a result
of applying the operator the thing will now be inside the bag but still
at the same location. The operator can be specified as follows:

operator(put_in(T,B),
% prevail
[(bag,B,[at_bag(B,L)])
],
% necessary
[(thing,T,[at_thing(T,L),outside(T)]

=>
[at_thing(T,L),inside(T,B),
fits_in(T,B)])

],
% conditional
[ ])

We define O.Pre to be the preconditions of O, i.e. the set of object
expressions in O:prev and the set of left hand sides of O:nec. Hence
put in.Pre is [at bag(B,L), at thing(T,L), outside(T)]. If O is ground
we can define O.Rhs to be the set of substates in the right hand sides
of O:nec.

The definition of the move operator illustrates the specification
of a conditional transition. In the example the conditional transition
asserts that if any ‘thing’ is at the same location as the bag (A) and
is inside the bag then it changes state to being at location (B) the new
location of the bag and remains inside the bag. Where there is more
than one transition in a conditional section they form a disjunction.
The move operator is defined as follows:

operator(move(X,A,B),



% prevail
[],
% necessary
[(bag,X,[at_bag(X,A),ne(A,B)]

=>
[at_bag(X,B)])

],
% conditional
[(thing,T,[at_thing(T,A),inside(T,X),

fits_in(T,X)]
=>

[at_thing(T,B),inside(T,X),
fits_in(T,X)])

])

3 The Graphplan System

Graphplan [2] has proved to be one of the fastest plan generation
algorithms working with a traditional STRIPS-like planning repre-
sentation. Since its introduction a number of authors have proposed
amendments with a view to improving the efficiency of the algo-
rithm further e.g. [5]. Here we give only a very brief review of the
algorithm, given the amount of published literature already using it.
Graphplan works by building a plan-graph representing all possible
plans creatable from the initial state by application of the available
operators. If we consider the set of propositions true in the initial
state as being at level 1 in our plan-graph then at level 2 will exist
the set of all operations that are applicable, i.e. have their precondi-
tions fulfilled by the propositions of level 1. At level 3 will be the
set of propositions made true by the application of the operators of
level 2. This process continues by developing the graph in exactly the
same manner to additional levels. In the developing graph we record
the application of operators as links that connect the propositions of
the adjacent odd numbered levels. This process of moving from one
level of propositions to the next supported by the application of op-
erators is augmented by the application to every proposition at level
n with a special operator no-op that renders the proposition true at
level n + 2. This forward development of the graph faces a problem
in that clearly in all proposition levels other than level 1 there may
be propositions that cannot be jointly true. In the briefcase world the
bag ‘briefcase’ cannot be at home and at the office. Likewise in a
link layer actions may be mutually exclusive. The actions of moving
the briefcase home and the action of moving it to the office cannot
be simultaneously undertaken. We think of each proposition level
as recording what potentially might be true at the same instant. We
think of each link layer as recording the operations that might con-
sistently be applied in parallel or where no commitment to ordering
is required. The inconsistencies within a layer are recorded within
Graphplan by augmenting the graph further by noting these mutually
exclusive relations both between operations in the link layers and by
recording mutually exclusive relations at the proposition layers. The
development of the graph in this way from one proposition layer to
the next mediated by a link layer constitutes the forwards phase of
Graphplan.

To complete Graphplan a backwards search phase is required to
find if a legal plan that satisfies the goal condition has been gen-
erated. This backwards phase is undertaken after the generation of
each proposition layer, and starts by first searching the new propo-
sition layer to see if all the propositions of the goal state are sup-
ported at this level. If they are not then the backward phase can be
terminated and the next forwards phase started. If the goals are all

present then the goal propositions must be checked to ensure that
there are no recorded mutual exclusions between any of them. The
backwards phase continues finding a set of operations that support
these propositions and are themselves mutually consistent then re-
cursively checking the preconditions of those operations in the same
manner at the level two below. This process continues until we have
regressed to the propositions of level 1 which by definition must be
consistent with one another. If at any layer we find that the chosen
set of operators are not mutually consistent then we must backtrack
and see if an alternative set of operations can be chosen to support
the same set of propositions. In this way Graphplan will continue
interleaving its forwards and backwards phases to find an optimally
parallel short legal plan, if one exists.

3.1 Conditional Effects in Graphplan

Since the original description of Graphplan a number of authors have
described algorithms to extend Graphplan to allow the processing of
conditional effects [7, 1]. In their paper Anderson Smith and Weld
argue that the relatively simple approach of expanding the condi-
tional effects section into all combinations of possible groundings
is not feasible in cases dealing with significant numbers of possible
groundings. They propose instead what they call a ‘factored expan-
sion approach’. Their approach requires that a operator with condi-
tional effects be composed of clauses, one for the non-conditional
component of the STRIPS operator and one for each grounding of
the conditional clause conjoined with the non conditional element.
The resulting move � briefcase operator with the cheque and the
dictionary is as follows:

move-briefcase (?loc ?new)
:effect
(when (and (at briefcase ?loc)

(location ?new)
(not (= ?loc ?new)))

(and (at briefcase ?new)
(not (at briefcase ?loc))))

(when (and (at briefcase ?loc)
(location ?new)
(not (= ?loc ?new))
(in cheque briefcase))

(and (at cheque ?new)
(not (at cheque ?loc))))

(when (and (at briefcase ?loc)
(location ?new)
(not (= ?loc ?new))
(in dictionary briefcase))

(and (at dictionary ?new)
(not (at dictionary ?loc))))

A consequence of this approach is that each of the elements be-
comes a semi-independent rule which can be fired separately which
results in a requirement for more complex processing of mutex rela-
tions during the search phases of the Graphplan algorithm.

The approach we take in OCLGraph is similar to that of both An-
derson et al and Koehler et al [1, 7], in that when we ground the op-
erators the result will have one clause (object transition) in the condi-
tional effects section for each object for which the grounding of the
conditional effects clause is consistent with the necessary and pre-
vailing sections of the operator. The growth of the number of clauses
in the conditional effects section as a result of grounding is linear. It
is bounded by the number of objects in the problem domain of the



correct object sort. We will delay further discussion until we have
presented the OCLGraph algorithm.

4 The Object Graph

4.1 OCL Input

We will assume that the domain model is input using a restricted from
of OCL to coincide with the input language specified in reference [2],
but extended to deal with conditional effects. In particular, OCL oper-
ator schemas are translated to a ground set. The conditional element
is expanded to include all consistent groundings of the conditional
element. During the grounding which is done as a preprocessor step,
static predicates are used to ensure consistent groundings. For exam-
ple the static information about which objects fit in the briefcase and
which objects fit in the suitcase is used to ensure that a conditional
transition for moving the ‘suit’ which does not fit in the briefcase is
not generated. The ground operators to move the briefcase in a world
containing a cheque a dictionary and a suit from home to the office
expands to:

operator(move(briefcase, home, office),
% Prevail
[],
% Necessary
[(bag,briefcase,

[at_bag(briefcase, home)]
=>
[at_bag(briefcase, office)])

],
% Conditional
[
(thing,cheque,

[at_thing(cheque, home),
inside(cheque, briefcase)]

=>
[at_thing(cheque, office),
inside(cheque, briefcase)]),

(thing,dictionary,
[at_thing(dictionary, home),
inside(dictionary, briefcase)]

=>
[at_thing(dictionary, office),
inside(dictionary, briefcase)])

] )

A problem input to OCLGraph is defined by an initial state (a to-
tal mapping between dynamic object identifiers and substates) and
a goal condition (a mapping between object identifiers and ground
substate expressions).

4.2 Building Up the Graph

We build an ‘OCL-graph’ in the spirit of Graphplan by first substi-
tuting the idea of a proposition level with what we call an ‘object
level’, defined as a (total) mapping (called level(n) where n is odd)
between the set of object identifiers O-ids and the partitioned set of
all possible substates for that object:

level(n) : O-ids ) Table

where Table is a set of substates partitioned by the substate class
definitions. The intuitive idea is that if an object situation (s,i,ss) is

potentially reachable at level n through the execution of operators
then ss will be somewhere in the (partitioned) set ‘level(n)[i]’.

Two immediate consequences of this representation are that:
(a) The size of every object level in a plan graph is always fixed

as the number of objects in the initial state, although the size of the
range sets of this map generally increases to the point where all legal
substates for the objects, as defined in the substate class definition,
are in the range.

(b) In a literal-based Graphplan any subset of the
propositions at each propositional level can form a
goal set which is potentially satisfiable. For example in
the briefcase world, the set fin thing(cheque,briefcase),
at thing(cheque,home),outside(cheque)g would be acceptable
in principle, but would be found to be inconsistent through operator
back chaining. OCL restricts goal sets to a set of legal object
expressions - hence the above expression would not be allowed
as the cheque’s substate expression is not well formed (it is not a
specialisation of either one of thing’s two substate classes).

4.2.1 Example

To create level(n+2) from level(n), we copy over the old mapping
(this parallels the use of ‘no-ops’ in reference [2]) and add new sub-
states to level(n+2)’s range if they are created by operator application
at level(n+1). Consider the briefcase world with only two locations
(home (h) and office (o)) and two things (cheque (c) and dictionary
(d)). In the initial state b, c and d are all at home, c is inside b and
d is not inside a bag. Then the development from the initial state in
level 1 to level 3 is as follows:

level(1)[c] =
{partition 1:[at_thing(c,h),inside(c,b)}

level(1)[d] =
{partition 1:[at_thing(d,h),outside(d)]}

level(1)[b] =
{partition 1:[at_bag(b,h)]}

level(3)[c] =
{partition 1:[at_thing(c,h),inside(c,b)],

[at_thing(c,o),inside(c,b)],
partition 2:[at_thing(c,h),outside(c)]}

level(3)[d] =
{partition 1:[at_thing(d,h),outside(d)],
partition 2:[at_thing(d,h),inside(d,b)]}

level(3)[b] =
{partition 1:[at_bag(b,h)],

[at_bag(b,o)]}

The operators applicable at level 2 are take out(c,b), put in(d,b), and
move(b,h,o), with the conditional effect of moving the cheque from
home to the office.

4.3 Links

Definition of ‘contains’ If SE is a set of ground object ex-
pressions, n is odd, then contains(level(n); SE) is true iff
for each (s,i,se) in SE, there is a substate ss 2 level(n)[i] such
that se � ss.

An operator is applicable to level(n) if contains(level(n),O.Pre) is
true, where O.Pre are the operator’s preconditions as defined above.
For example, contains(level(3),[at bag(b,o)]) is true. Note that O.Pre
excludes any elements for the operators conditional effects.



Definition of Links Assume operator O is applicable at
level(n). Then a link lk(O; i; ss;mode) is stored in level(n+1)
if either (a) O changes i’s substate to ss or (b) (s,i,se)2O.prev,
ss 2 level(n)[i] and se � ss or (c) O is a no-op preserving
ss from level(n)[i] to level(n+2)[i]. We record mode as either
‘change’, ‘prevail’ or ‘no-op’ depending on each of the cases
(a) - (c).

In the running example we therefore store the following:

level(3)[c] =
{partition 1:[at_thing(c,h),outside(c)],
partition 2:[at_thing(c,h),inside(c,b)]}

level(3)[d] =
{partition 1:[at_thing(d,h),outside(d)],
partition 2:[at_thing(d,h),inside(d,b)]}

level(3)[b] =
{partition 1:[at_bag(b,h)],

[at_bag(b,o)]}

level(2) =
{lk(no-op-1,c,

[at_thing(c,h),inside(c,b)], no-op),
lk(take_out(c,b),c,

[at_thing(c,h),outside(c)],change),
lk(take_out(c,b),b,[at_bag(b,h)],prevail),
lk(no-op-2,d,

[at_thing(d,h),outside(d)],no-op),
lk(put_in(d,b),d,

[at_thing(d,h),inside(d,b)],change),
lk(put_in(d,b),b,[at_bag(b,h)],prevail),
lk(no-op-3,b,[at_bag(b,h)],no-op),
lk(move(b,h,o),b,[at_bag(b,o)],change)}

To process the conditional effects in the forwards phase of the al-
gorithm, new links and object substates at level n + 2 are added as
follows:

Definition of Conditional Links For each conditional effect
transition cc in an applicable operator O at level n+ 1, if
9 ss 2 level(n): cc.lhs � ss
then add cc:rhs to level n+ 2 and add link lk(O,i,cc.rhs,cond)
to level(n+1) (hence the link here is labelled ‘cond’).

For the briefcase this adds a new substate to level(3)[c] and adds
a new link to record the application of the effect as follows:

level(3)[c] =
{partition 1:[at_thing(c,h),outside(c)],
partition 2:[at_thing(c,h),inside(c,b)],

[at_thing(c,o),inside(c,b)]}

lk(move(b,h,o),c,
[at_thing(c,o),inside(c,b)],cond)}.

We have applied one of the conditional elements in the ‘move’ oper-
ator. In applying such conditional elements we only consider opera-
tors that have already been applied, that is operators that have their
prevailing and necessary preconditions fulfilled at that level, these
operators already have their necessary effects and links recorded as
described above.

4.4 Mutual Exclusions in OCLGraph

The forward development of the plan graph spreads in the manner de-
scribed above. It is checked, however, by the use of mutual exclusion
conditions on both operators and substates in the object levels. Blum
and Furst’s ‘Interference’ statement ([2], section 2.2) is paraphrased
as follows: ‘If either of actions O1 and O2 deletes a precondition or
Add-Effect of the other, they are mutually exclusive at that level. Sec-
ondly if actions O1 and O2 have preconditions which are recorded as
mutually exclusive then they are mutually exclusive’ The idea is then
to check each operator at each level against all the others, resulting
in a set of binary mutual exclusions.

We exploit the structure of OCL to give the following definition:

General Rule for Operator Mutex Formation For each ob-
ject identifier i in the object level(n+2), two distinct operators
O1 and O2 are mutually exclusive if lk(O1,i,ss1,mode1) and
lk(O2,i,ss2,mode2) are links recorded in level(n+1).

In other words, if two operators support the same object then they are
mutually exclusive to one another.

The rationale is as follows: if operators O1 and O2 change or rely
on the same object being in a particular substate, then they would in
general interfere with each other. There are, however, some excep-
tions to the general rule above. Firstly, if ss1 = ss2, then at least one
of mode1 or mode2 must be ”change”. If ss1 = ss2 and no mode is
”change”, then it does not follow that O1 and O2 are mutually exclu-
sive. In practice we say O1 and O2 conflict if there is a reference to
different substates of the same object in the preconditions or neces-
sary effects of the operators. Secondly if mode1 = cond or mode2 =
cond then we do not add the conflict at this stage as the conditional
effect may not be used in the final plan even though the operator is.
We do not in the forwards development of the graph detect if the fir-
ing of one element in an operator will force the firing of another. This
is contrary to the practice of [1].

The case made by [1] for the need to record such induced mutexes
derives from two cases.

� If two components of an operator are such that the preconditions
of one of the components cannot be logically met without meet-
ing the preconditions of the second component then we need to
record that component one will be mutexed with all the operators
component two is mutex with.

� The second case is harder to paraphrase but essentially if compo-
nent one can fire and due to absence of other information the only
way component two could fail to fire is if component one did not
fire then again we can deduce that one forces two and should be
mutexed with the operators two is mutexed with.

In OCL the first of the cases cannot arise as each element of an
operator will refer to a different object and hence the preconditions
for a conditional transition to fire cannot be contained in the other
elements of the operator. The second case can arise. For example in
the briefcase world if at level one the cheque is inside the briefcase,
and we move it, then the cheque will also move. There is no other
possibility as no other possible state of the cheque is recorded at this
level. At later levels other states of the cheque will also be recorded
and hence there will not be the same guarantee that moving the brief-
case moves the cheque.

We could search for such cases but they are just a special case of
a conditional effect being forced as a result of the interplay of the
preconditions of a set of operators at a given level. We could not deal



with the general case in the forward phase of graph development as
the set of operators will be dependent on the choices made in identi-
fying a candidate valid plan. We therefore leave the backwards search
phase of the planner to take care of potential conflicts arising from
such conditional effects.

Employing this method to the example above, the mutexes turn out
to be:

mutex(2) = {
{ no-op-1, take_out(c,b)},
{ no-op-2, put_in(d,b)},
{ move(b,h,o), no-op-3 },
{ move(b,h,o), take_out(c,b) },
{ move(b,h,o), put_in(d,b) } }

The mutex that we miss by delaying consideration of conditional ef-
fects is {move(b,h,o), no-op-1} . That is we cannot move
the briefcase from home to the office with the cheque inside and si-
multaneous leave the cheque inside the briefcase at home. Note that
the exceptions to the general mutex rule rule collapses the mutex
formed by considering the ‘briefcase’ to binary mutexes.

Mutual exclusion conditions on object levels: In the original
Graphplan description, two propositions p1 and p2 were mutually
exclusive if all operators creating proposition p1 were exclusive of
operators for creating p2. In the OCL formulation, we have two ob-
ject class expressions (s,i,ce1) and (s,j,ce2) are mutually exclusive
if

� for i <> j, for any operator O that supports ce1 and operator O1
that supports ce2, O and O1 are mutually exclusive (as defined by
the binary mutexes described above)

� for i = j, ce1 and ce2 cannot be satisfied by a common ground
substate

The first condition is similar to the original idea. The second arises
from the fact that an object cannot be in two substates at the same
level.

5 The OCL-graph Algorithm

5.1 Forwards Phase

Figure 1 shows the overall algorithm. Line 1 initialises the first level
in the plan graph using the initial state. If the goals are not trivially
achieved (Line 3), the algorithm builds two new levels, a new object
level (n+2) and a link level (n+1) First in Line 7 the object states of
level n are copied to level n+2 and the no-ops links added (note each
no-op is given a unique identifier no-op-X). Following the addition
of the no-ops, the code in the internal loop (Lines 8 to 23) applies
the domain operators initially without reference to their conditional
effects and the new object level is augmented and appropriate links
added (lines 11,to 15). Following the application of an operator each
transition of the operator’s conditional effects is considered and if
its preconditions are met and do not conflict with the preconditions
of the prevail and necessary section it is applied and the appropriate
substates and links added to the corresponding levels. (lines 16 to 20)
After the loop adding all new substates to level n+2 and all links to
level n+1 completes, operator mutex sets are built and added to level
n+ 1 in Line 24.

5.2 Backwards Phase

Figure 2 details the definitions of ‘ACHIEVE’ which has overall con-
trol of the backwards search for a valid plan. ACHIEVE searches for

algorithm OCL-graph
In O-ids : Object identifiers; I : O-ids ) Substates, Ops : Ground
Operators, G : Goals
Out P : Parallel Plan
Types level(n) (n odd) is a map O-ids ) Table, level(n) (n even) is a
set of links
Types mutex(n) is a set of operator sets

1. 8 i 2 O-ids: level(1)[i] = fI[i]g
2. n := 1;
3. ACHIEVE(G,1, P) ;
4. while (P = null) do
5. level(n+2) := level(n);
6. links(n+1) := f g;mutex(n+1) = f g;
7. 8 i 2 O-ids: 8 ss 2 level(n+2)[i] :

add lk(no-op-X, i, ss, no-op) to level(n+1);
8. 8 O 2 Ops do:
9. if contains(level(n), O.Pre) then
10. if not MUTEX(O.Pre,n) then
11. 8(s,i,ss) 2 O.rhs: add ss to level(n+2)[i],
12. add lk(O,i,ss,change) to level(n+1);
13. 8 (s,i,se) 2 O.prev:
14. if se � ss & ss 2 level(n+2)[i]
15. then add lk(O,i,ss,prevail) to level(n+1);
16. 8 cc 2 O.cond:
17. if contains(level(n),cc.lhs) &

not MUTEX(Pre \ cc.lhs)
18. then add cc.rhs to level(n+2)[cc.i];
19. add lk(O,cc.i,cc.rhs,cond), to level(n+1);
20. end if
21. end if
22. end if
23. end for;
24. calcuate all binary mutexes and add to mutex(n+1)
25. n := n+2;
26. if contains(G,level(n)) then ACHIEVE(G, n, P);
27. end while
28. end.

Figure 1. An Outline of the Object-Graph Planning Algorithm

a consistent operator set Y to achieve the goal set G, and if it finds
one first calls COND PRECONDITIONS to determine which con-
ditional effects of the operators in set Y are required to achieve G
and adds the preconditions of those elements to the necessary and
prevailing preconditions of the operators Y. ACHIEVE then recur-
sively calls itself at level(n-2) with the set of preconditions of Y as
the new goals to achieve. The definition of consistent in Line 6 is left
open ended, and depends on whether mutexes are stored concern-
ing substates, as well as checking to see whether a goal expression is
well formed with respect to the substate class definitions. The current
OCL-graph implementation does not memoize substate mutexes, but
this is a subject for on-going research.

The strategy for selecting conditional effects is shown in Figure 3.
In line 1 we determine which substate expressions of the Goal state
have not been supported by the necessary or no � op effects of the
chosen operator set O, these are the substate expressions that must



procedure ACHIEVE(SS : set of substate expressions, n : odd
integer, P : plan );
Global levels, mutexes
Out a parallel plan P;

1. if n = 1 & contains(level(1), SS) then P = f g
2. elseif n = 1 and not contains(level(1),SS) then
3. P = null
4. else
5. P’ = null;
6. choose Y := a consistent set of operators that

achieve a set of substates containing SS;
7. while(Y <> null & P’ = null) do
8. Y’ := union of all the operators necessary

and prevailing preconditions in Y;
9. Y” := fg;
10. while(Y” <> null & P’ = null) do
11. Y” := COND PRECONDITIONS(SS,Y,n)
12. if Y” <> null then
13. ACHIEVE(fY’[Y”g,n-2,P’)
14. end while
15. if not(P’ = null) then
16. P := append(P’,Y)
17. else
18. systematically generate another choice for Y
19. end if
20. end while
21. end if
22. end.

Figure 2. Achieve Procedure for the Object-Graph Algorithm

be supported by the conditional effects. Line 2 selects a set of those
transitions from the conditional effects of the operators O that sat-
isfies the unfulfilled goals SS’. The procedure then iterates on the
selected set of transitions if any to check their consistency. To check
the consistency of a selection we first determine those conditional ef-
fect transitions contained in the operator set O which are not needed
to support the goal (Spare). We then check that the preconditions of
each of the ‘Required’ transitions is consistent with the main pre-
conditions of the selected operator set O and that none of the Spare
conditional effects would if they are fired by the preconditions al-
ready required conflict with the outcomes of the operators selected.
If these conditions are met we have successfully chosen the condi-
tional effects needed and simple return them otherwise we must see
if an alternative set of conditional effect elements can be generated
to meet the requirement.

The primary method for determining that a set of object states are
consistent is the function ‘MUTEX’. Figure 4 It does the checking
very simply, by trying to find a set of consistent operators at the level
below which add these substate expressions. Operator sets are con-
sistent if no two operators in the set are mutually exclusive.

function COND PRECONDITIONS(SS : goal set,
O : operator set, n : odd integer): set of substate expressions
Global levels,mutexes

1. SS’ := fSS - fse : se 2 O.rhsgg;
2. Required := a set of conditional elements from

O.COND that achieve a set of substates
containing SS’;

3. while Required <> null do
4. Spare := fO.COND - Requiredg;
5. if not MUTEX(fO.Pre [ Required.lhsg,n) &
6. 8 cc 2 Spare
7. if cc.lhs satisfied in fO.Pre [ Required.lhsg then

not cc.rhs conflicts with
fO.rhs [ Required.rhsg

8. then
9. return Required;
10. else
11. Required := choose new set from O.COND

that achieves the set of substates containing SS’
12. end if
13. end while
14. return null;
15. end.

Figure 3. Selection Conditional Effect Elements for Plan Inclusion

function MUTEX(SS : set of substate expressions, n : odd integer):
boolean
Global levels, mutexes

1. if n = 1 & contains(level(1), SS) then
2. MUTEX := false
3. else if n = 1 and not(I contains SS) then
4. MUTEX := true
5. else if 9 Y, a set of operators that achieve a set

of substates containing SS, and
no two operators in Y are mutexed then

6. MUTEX := false
7. else MUTEX := true
8. end.

Figure 4. Detecting mutex relations in a set of Object Substates

6 Implementation

To try and establish the benefits of using OCL in a Graphplan like
algorithm we initially created two separate distinct planners, imple-
mented in Sicstus Prolog. The first, though it could process OCL
descriptions of planning domains, made no attempt to benefit from
the structure. Rather it was used to simply extract the elements of



the standard STRIPS style operators. This implementation was de-
signed to form our base measure for conducting experiments in an
attempt to investigate the advantages in utilising the structures inher-
ent in OCL. We refer to this implementation of Graphplan as ‘vanilla’
Graphplan. The second implementation “OCLGraph” tries to fully
exploit the structure of OCL. Though the results derived from these
implementations were encouraging they are not reliable as an objec-
tive comparison of the underlying algorithms. To try and rectify this
position we are currently developing a new version of OCLGraph in
Lisp with a view to comparing its performance against other public
domain versions of Graphplan. In particular “Sensory GraphPlan”
[3] is ideal for this purpose as it provides a clean faithful implemen-
tation of Graphplan but also encorporates extensions to deal with
conditional effects.

7 Empirical Results

Tests have been carried out on a number of the standard ‘toy’ do-
mains, such as the Rocket, Robot and Flat Tyre world and the Brief-
case world for conditional effects. The tests have involved compar-
ing times of the vanilla version of Graphplan against the Prolog OCL
version and comparing times of “Sensory” Graphplan with the Lisp
version of OCLGraph.

The results of our tests are problematic in that a clear speed up is
indicated when we compare the Prolog version of OCLGraph with
our own vanilla version of Graphplan and on the most favourable
problems this can be by as much as 100 fold. However these results
are not replicated when we compare the Lisp version of OCLGraph
with “Sensory Graphplan”. In this case the results mostly indicate no
significant difference but with some problems our OCLGraph per-
formed slower by an order of magnitude. The problems where our
software was performing worse than “Sensory Graphplan” were in
examples where the goal state was generated at a relatively early level
in the progress of the forwards phase of the algorithm but where a le-
gal plan was not generated until several levels deeper into the graph
expansion. This happens in examples such as tasks in the “Flat Tyre
World” where the tools have to be returned to the “boot”, their initial
state, after being used to fix the tyre.

Clearly more work needs to be done with the code to ensure the
faithfulness in the implementations. That the code produces the ex-
pected results is not sufficient guarantee that the algorithms are accu-
rately implemented. The relatively poor results with our Lisp imple-
mentation may result from fewer mutexes being recorded in the for-
ward search than should be. A problem of this nature would degrade
performance but not prevent the eventual production of the correct
answer.

8 Analysis

We would expect the performance of a Graphplan-like algorithm to
be influenced primarily by control of the branching factor of the
graph. The factors influencing the degree of branching are:

� The most obvious factor is the creation of mutex relations during
the forwards phase of the graph expansion. The identification of
substate class definitions at domain design time in OCL provides
the algorithm builder with inexpensive methods for identifying
mutex relations between predicates referring to the same object.
However though OCL makes it easier to find mutexes it is not
clear that mutexes are found that would not be found in standard
Graphplan.

� In OCL versions of Graphplan the branching factor relating to an
action should be reduced by the fact that propositions are grouped
together into substate descriptions of specific objects. In a back-
wards search for a legal plan if we have selected an action as a
candidate for inclusion in the plan we need to check the produc-
ers of each of the substates of the objects referred to in the ac-
tion. In the non-OCL version we need to check the producers of
each of the separate propositions referred to in the preconditions
of the action. For example if we want to add to a candidate plan a
moveaction in the “Briefcase World” in the OCL version we need
to consider the producer of the briefcase and that of each object
in the briefcase. In a situation with two objects in the briefcase
we have three producers to include at the next lower level. In the
non-OCL version we need to check the producer of the proposi-
tion describing the briefcase’slocation and for each object in the
briefcase we need to check the producer of the proposition stating
the location of the object and the proposition stating that the ob-
ject is in the briefcase and potentially the static predicate that the
object fits in the briefcase. Again with two objects in the briefcase
we need to check one producer for the briefcase but three for each
of the two objects in the briefcase. The fan out from the non-OCL
version thus seems significantly greater than the fan out from the
OCL version.

� Another way the OCL formulation of Graphplan helps control
search manifests itself when dealing with conditional effects. As
detailed in [7], the backwards search needs to take account of the
unwanted firing of conditional effects, which would interfere with
the achievement of the plan goals. In OCLGraph as objects can
only be in one substate at a time we don’t need to both check that
(a) an object is in some desired substate, required for the achieve-
ment of the goal and (b) that it is not in some other substate to
prevent the firing of an unwanted conditional effect.

� The grouping of propositions into descriptions of object states as
done in OCL in some circumstances increases the branching factor
of the graph by introducing more action instantiations at a given
level of the graph than is done in the standard version of the algo-
rithm. This problem is best described with the aid of an example.
Consider enhancing the description of objects in the “Briefcase
World” to allow us to record states of the objects. For example
we might want to record whether or not the suit is “clean” or
“dirty”. In which case we might augment state descriptions of ob-
jects by introducing a predicate state(Object; P roperty). Such
predicates are then added to all state descriptions of objects. Such
a change would have no impact on how the move operator is de-
scribed in the STRIPS style representations used by the standard
Graphplan algorithm nor would it make any difference to the num-
ber of move operations applicable at any level in the graph. The
state of any of the objects, as described above would be unaffected
by the moveoperator and would be deemed to persist. In an OCL
version of the moveoperator there would be both a change to its
representation and potentially to the number of applicable move
operations at a level in the graph. In the representation of the
OCL version of the operator we would need to refer to the state
of the object being moved as the right-hand-side of a transition
must fully specify the resulting state of the object concerned. This
would have the consequence that at some levels of the graph we
would generate one move operator to move a “clean” suit from the
office to home and another operator to move a “dirty” suit. There
is no such duplication in the traditional Graphplan algorithm.



It would seem then that the extra structure of the OCL representation
pulls in both directions. Both allows us in some circumstances to
reduce the branching factor of the graph and in other circumstances
increases it.

9 Conclusions

In this paper we have illustrated how a graph-based algorithm can be
extended to more structured representations of planning domains. We
have argued that there is potential for efficiency gains though there
are also threats. Our analysis and experimentation is not yet at a suf-
ficiently mature stage to accurately determine the extent of the trade
off between the competing factors. Our design of the Object-Graph
algorithm has uncovered various ways in which the extra information
content of OCL can be used to make the graph-based algorithm more
efficient but we have not been able to remove the potential threats to
efficiency, though this may be possible in a hierarchical formulation
of Graphplan.

There are many avenues for future work. First we would like to
extend the experimental base to cover cases with a greater diversity
of graph sizes, and to experiment with more interesting domains pos-
sessing more structure. Secondly, there is a need to analyse the com-
putational complexity of the OCL-based algorithm in greater depth,
and compare it with the original. Thirdly, we need to extend the al-
gorithm to be able to accept the full OCL language, and to improve
the algorithm so that it uses yet more of the extra information given
in an OCL model. For example, domain invariants typically found in
an OCL model often read as mutex constraints on a pair of substates.
Finally, improvements to the basic algorithm such as dependency di-
rected backtracking [4] have not been implemented but there is no
reason to expect that they would not be equally applicable to our
version of the algorithm.

REFERENCES

[1] Corin R. Anderson, David E. Smith, and Daniel S. Weld, ‘Conditional
Effects in Graphplan’, in The Fourth International Conference on Arti-
ficial Intelligence Planning Systems, (1998).

[2] A. L. Blum and M. L. Furst, ‘Fast planning through Planning Graph
Analysis’, Artificial Intelligence, 90, 281–300, (1997).

[3] C.Anderson, D.E.Smith, and D.Weld, Sensory Graphplan
, http://www.cs.washington.edu/research/projects/ai/www
/projects/Sensory Graphplan/, 2000.

[4] S. Kambhampati, ‘On the relations between intelligent backtracking
and explanation-based learning in planning and constraint satisfac-
tions’, Artificial Intelligence, 105, (1998).

[5] S. Kambhampati, E. Parker, and E. Lambrecht, ‘Understanding and Ex-
tending Graphplan’, in Proceedings of the 4th European Conference on
Planning, (1997).

[6] D. E. Kitchin, Object-Centred Generative Planning, Ph.D. dissertation,
School of Computing and Mathematics, University of Huddersfield,
forthcoming,2000.

[7] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos, ‘Extending
Planning Graphs to an ADL Subset’, in Proceedings of the 4th Euro-
pean Conference on Planning, (1997).

[8] D. Liu and T.L.McCluskey, ‘The OCL Language Manual, Version 1.2’,
Technical report, Department of Computing Science, University of
Huddersfield , (2000).

[9] T. L. McCluskey, ‘Object Transition Sequences: A New Form of Ab-
straction for HTN Planners’, in Proceedings of the 5th International
Conference on Artificial Intelligence Planning and Scheduling Systems
(aips-2000), (2000).

[10] T. L. McCluskey and J. M. Porteous, ‘Engineering and Compiling Plan-
ning Domain Models to Promote Validity and Efficiency’, Artificial In-
telligence, 95, 1–65, (1997).

[11] B. Pell N. Muscettola, P. P. Nayak and B. C. Williams, ‘Remote Agent:
To Boldly Go Where No AI System Has Gone Before’, Artificial Intel-
ligence, 103(1-2), 5–48, (1998).

[12] J. M. Porteous, Compilation-Based Performance Improvement for Gen-
erative Planners, Ph.D. dissertation, Department of Computer Science,
The City University, 1993.


