
A Heuristic for Domain Independent Planning and its
Use in an Enforced Hill-climbing Algorithm

Jörg Hoffmann1

Abstract. We present a new heuristic method to evaluate planning
states, which is based on solving a relaxation of the planning prob-
lem. The solutions to the relaxed problem give a good estimate for
the length of a real solution, and they can also be used to guide ac-
tion selection during planning. Using these informations, we employ
a search strategy that combines Hill-climbing with systematic search.
The algorithm is complete on what we call deadlock-free domains.
Though it does not guarantee the solution plans to be optimal, it does
find close to optimal plans in most cases. Often, it solves the prob-
lems almost without any search at all. In particular, it outperforms all
state-of-the-art planners on a large range of domains.

1 INTRODUCTION

The standard approach to obtain a heuristic is to relax the problem P

at hand into some easier problem P0. The optimal solution length to
a situation in P0 can then be used as an admissible estimate for the
optimal solution length of the same situation in P . An application of
this idea to domain independent planning was first used in the HSP
system [3]. The planning problem P is relaxed by simply ignoring
the delete lists of all operators. However, computing the optimal so-
lution length for a planning problem without delete lists is still NP-
hard, as was first shown by Bylander [4]. Therefore, the HSP heuris-
tic is only a rough estimate of the optimal relaxed solution length.
In short, it is obtained by summing up the minimal distances of all
atomic goals.

In this paper, we go one step further. We introduce a method that
computes some, not necessarily optimal, solution to the relaxed prob-
lem. These solutions are helpful in two ways:

� their length provides an informative estimate for the difficulty of
a situation;

� one can use them as a guidance for action selection.

The solution length estimates are used to control a local search
strategy similar to Hill-climbing, which is combined with systematic
breadth first search in order to escape local minima or plateaus. The
guidance information is employed to cut down the branching factor
during systematic search. The method shows good behavior over all
domains that are commonly used in the planning community. In par-
ticular, we will see that it is complete on the class of problems we call
deadlock-free. Performing local search, the method can not guaran-
tee its solution plans to be optimal. In spite of this, it finds close to
optimal plans in most cases. As a benefit from the severe restriction

1 Institute for Computer Science, Albert Ludwigs University,
Georges-Köhler-Allee, Geb. 52, 79110 Freiburg, Germany, email:
hoffmann@informatik.uni-freiburg.de

of its search space, it shows very competitive runtime behavior. For
example, logistics problems are solved faster than by any other do-
main independent planning system known to the author at the time
of writing.

2 BACKGROUND

Throughout the paper, we consider simple STRIPS domains. We
briefly review two standard notations. An action o has the form

o = h pre(o)) add(o); del(o) i

where pre(o), add(o) and del(o) are sets of ground facts. Plans P
are sequences P = ho1; : : : ; oni of actions, i.e., we consider only
linear plans.

3 HEURISTIC

In this section, we introduce a method for heuristically evaluating
planning states S. Basically, the method consists of two parts.

1. First, the relaxed fixpoint is built on S. This is a forward chaining
process that determines in how many steps, at best, a fact can be
reached from S, and with which actions.

2. Then, a relaxed solution is extracted from the fixpoint. This is a
sequence of parallel action sets that achieves the goal from S, if
their delete effects are ignored.

The first part corresponds directly to the heuristic method that is used
in HSP [3]. The second part goes one step further: while in HSP, the
heuristic is extracted as a side effect of the fixpoint, we invest some
extra effort to find a relaxed plan, and use the plan to determine our
heuristic value. The fixpoint process is depicted in Figure 1.

The algorithm can be seen as building a layered graph structure,
where fact and action layers are interleaved in an alternating fash-
ion. The process starts with the initial fact layer, which are the facts
that are TRUE in S. Then, the first action layer comprises the actions
whose preconditions are contained in S. The effects of these actions
lead us to the second fact layer, which, in turn, determines the next
action layer and so on. The process terminates, and remembers the
number max of the last layer, if all goals are reached or if the new
fact layer is identical to the last one.

The crucial information that the fixpoint process gives us are the
levels of all facts and actions. These are defined as the number of the
first fact- or action layer they are members of.

level(f) :=

(
minfi j f 2 Fig ex. i : f 2 Fi

1 otherwise

F0 := S

k := 0

while G 6� Fk do
Ok := fo 2 O j pre(o) � Fkg

Fk+1 := Fk [
S
o 2 Ok

add(o)

if Fk+1 = Fk then
break

endif
k := k + 1

endwhile
max := k

Figure 1. Computing the relaxed fixpoint on a planning state S. O and G
denote the action set and goal state of the problem at hand, respectively.

level(o) :=

(
minfi j o 2 Oig ex. i : o 2 Oi

1 otherwise

We now show how to extract a relaxed plan from the fixpoint struc-
ture. This is done in a backward chaining manner, where we simply
use any action with minimal level to make a goal TRUE. The exact
algorithm is depicted in Figure 2. Note that we do not need to search,
we can proceed right away to the initial state and are guaranteed to
find a solution.

for i := 1; : : : ;max do
Gi := fg 2 G j level(g) = ig

endfor
h := 0

for i := max; : : : ; 1 do
for all g 2 Gi; g not TRUE at i do

select o with g 2 add(o) such that level(o) = i� 1

h := h+ 1

for all f 2 pre(o); f not TRUE at i� 1 do
Glevel(f) := Glevel(f) [ffg

endfor
for all f 2 add(o) do

mark f as TRUE at i� 1 and i
endfor

endfor
endfor

Figure 2. The algorithm that extracts a relaxed solution to a state S after
the fixpoint has been built.

Before plan extraction starts, an array of goal sets Gi is initialized
by inserting all goals with corresponding level. The mechanism then
proceeds down from layer max to layer 1, and selects an action o

for each goal g at the current layer i, incrementing the plan length
counter h. No actions are selected for goals that are marked TRUE at
the time being, as they are already added. The achiever o is required
to have level(o) = i � 1. This is minimal as the goal g has level i,
i.e., the first action that achieved g in the fixpoint came in at level
i � 1. The preconditions of o are inserted as new goals into their
corresponding goal sets. If the current layer is i, then the levels of
o's preconditions are at most i� 1, so these new goals will be made
TRUE later during the process.

3.1 Goal Distance

To obtain the heuristic goal distance value h(S) of a given planning
state S, we now simply chain the two algorithms together. First, we
perform the fixpoint computation from Figure 1. If the process ter-
minates without reaching the goals, we set h(S) := 1. Otherwise,
we extract a relaxed plan, Figure 2, and use the plan length for eval-
uation, i.e., h(S) := h.

The overall structure of the relaxed planning process is quite simi-
lar to planning with planning graphs [1]. It amounts to a very special
case, as no negative interactions at all occur between facts or actions
in the relaxed problem.

3.2 Helpful Actions

We can also use the extracted plan to determine a set of actions that
seem to be helpful in reaching the goal. To do this, we turn our look
on the actions that are contained in the first time step of the relaxed
solution, i.e., the actions that are selected at level 0. These are often
the actions that are useful in the given situation. Let us see a simple
example for that, taken from the gripper domain, as it was used in the
1998 AIPS planning systems competition. We do not repeat the exact
definition of the domain here, as it is easily understood intuitively.
There are two rooms, A and B, and a certain number of balls, which
shall be moved from room A to room B. The planner changes rooms
via the move operator, and controls two grippers which can pick or
drop balls. Each gripper can only hold one ball at a time. We look at
a small problem where 2 balls must be moved into room B. A relaxed
solution to the initial state that our heuristic might extract is

< f pick ball1 A left,
pick ball2 A left,
moveA B g,

f drop ball1 B left,
drop ball2 B left g >

This is a parallel relaxed plan consisting of two time steps. Note that
the move A B action is selected parallel to the pick actions, as the
relaxed planner does not notice that it can not pick balls in room A
anymore once it has moved into room B. In a similar fashion, both
balls are picked with the left gripper. Nevertheless, two of the three
actions in the first step are helpful in the given situation: both pick
actions are starting actions of an optimal sequential solution. Thus,
one might be tempted to define the set H(S) of helpful actions as
only those that are contained in the first time step of the relaxed plan.
However, this is too restrictive in some cases. We therefore define
our set H(S) as follows.

H(S) := fo 2 O0 j add(o) \G1 6= ;g

After plan extraction, O0 contains the actions that are applicable in
S, and G1 contains the facts that were goals or subgoals at level 1.
Thus, we consider as helpful those actions which add at least one fact
that was a (sub)goal at the lowest time step of our relaxed solution.

4 SEARCH

We now introduce a search algorithm that makes effective use of the
heuristics we defined in the last section. The key observation that
leads us to the method is the following. On some domains, like the
gripper problems from the 1998 competition and Russel's tyreworld,
it is sufficient to use our heuristic in a naive Hill-climbing strategy. In
these problems, one can simply start in the initial state, pick, in each

state, a best valued successor, and ends up with an optimal solution
plan. This strategy is very efficient on the problems where it finds
plans.

However, the naive method does not find plans on most problems.
Usually, it runs into an infinite loop. To overcome this problem, one
could employ standard Hill-climbing variations, like restarts, limited
plateau moves, or a memory for repeated states. We use an enforced
Hill-climbing method instead, see the definition in Figure 3.

initialize the current plan to the empty plan <>

S := I
obtain h(S) by evaluating S
if h(S) =1 then

output ”No Solution”, stop
endif
while h(S) 6= 0 do

breadth first search for a state S0 with h(S0) < h(S)

if no such state can be found then
output ”No Solution”, stop

endif
add the actions on the path to S0 at the end of the current plan
S := S

0

endwhile

Figure 3. The Enforced Hill-climbing algorithm. I denotes the initial
state of the problem to be solved.

The algorithm combines Hill-climbing with systematic breadth
first search. Like standard Hill-climbing, it picks some successor of
the current state at each stage of the search. Unlike in standard Hill-
Climbing, this successor does not need to be a direct one, and, unlike
in standard Hill-Climbing, we do not pick any best valued succes-
sor, but enforce the successor to be one that is better than our current
state.

More precisely, at each stage during search a successor state is
found by performing breadth first search starting out from the cur-
rent state S. For each search state S

0, all successors are generated
and evaluated heuristically. Doubly occuring states are pruned from
the search by keeping a hashtable of past states in memory, and the
search stops as soon as it has found a state S0 that has a better heuris-
tic value than S. This way, the Hill-climbing search escapes plateaus
and local minima by simply performing exhaustive search for an exit,
i.e., a state with strictly better heuristic evaluation.

4.1 Helpful Actions

So far, we have only used the goal distance heuristic. We integrate
the helpful actions heuristic into our search algorithm as follows.
During breadth first search, we do not generate all successors of any
search state S

0 anymore, but consider only those that are obtained
by applying actions from H(S

0
). This way, the branching factor for

the search is cut down. However, the helpful actions heuristic is not
completeness-preserving, i.e., considering only the actions in H(S

0
)

might make the search miss a goal state. If this happens, i.e., if the
search can not reach any new states anymore when restricting the
successors to H(S

0
), we simply switch back to complete breadth

first search starting out from the current state S and generating all
successors of search nodes.

5 COMPLETENESS

The Enforced Hill-climbing algorithm is complete on deadlock-free
planning problems. We define a deadlock to be a state S that is reach-
able from the initial state I, and from which the goal can not be
reached anymore. A planning problem is called deadlock-free, if it
does not contain any deadlock state. We remark that a deadlock-free
problem is also solvable, cause otherwise the initial state itself would
already be a deadlock.

Theorem 1 LetP be a planning problem. IfP is deadlock-free, then
the Enforced Hill-climbing algorithm, as defined in Figure 3, will
find a solution.

Due to space restrictions, we do not show the (easy) proof of Theo-
rem 1 here and refer the reader to [5]. In short, if the complete breadth
first search starting from a state S can not reach a better evaluated
state, then, in particular, it can not reach a goal state, which implies
that the state S is a deadlock in contradiction to the assumption.

In [5], it is also shown that most of the currently used bench-
mark domains are in fact deadlock-free. Any solvable planning prob-
lem that is invertible in the sense that one can find, for each action
sequence P , an action sequence P that undoes P 's effects, does
not contain deadlocks. One can always go back to the initial state
first and execute an arbitrary solution thereafter. Moreover, planning
problems that contain an inverse action o to each action o are invert-
ible: simply undo all actions in the sequence P by executing the cor-
responding inverse actions. Finally, most of the current benchmark
domains do contain inverse actions. For example in the blocksworld,
we have stack and unstack. Similarly in domains that deal with lo-
gistics problems, for example logistics, bulldozer, gripper etc., one
can often find inverse pairs of actions. If an action is not invertible,
its role in the domain is often quite limited. A nice example is the
inflate operator in the tyreworld, which can be used to inflate a spare
wheel. Obviously, there is not much point in defining something like
a deflateoperator. More formally speaking, the operator does not de-
stroy a goal or a precondition of any other operator in the domain. In
particular, it does not lead into deadlocks.

As one of the anonymous reviewers pointed out to us, deadlock-
free domains might be an artificially dominant group because of the
simplicity of the current benchmarks. Any domain with consumable
resources will contain non-invertible actions. This is certainly true to
some extent. We have one theoretical and one practical answer.

� In theory, one can make Enforced Hill-climbing complete on any
planning problem by simply adding an operator that is applicable
in any situation, and reproduces the initial state. That way, search
always has the opportunity to go back to the start. In practice,
this is not likely to be an effective approach, as it would force
complete breadth first search to go all the way down to a state S0

with h(S0) < h
min , where hmin is the evaluation of the best state

seen so far.
� From a more practical point of view, our experience is that En-

forced Hill-climbing usually fails quite quickly on the problems
which it can not solve. One can then simply switch to a complete
heuristic search algorithm, like greedy best-first or weighted A�.

In the subsequent empirical investigation, we show results for a
large collection of benchmark planning problems. All of them but
one—a simple sokoban instance—are deadlock-free. This is not be-
cause we concentrated on solving problems that are deadlock-free,
but because there are very few benchmarks available that are not.

Anyhow, Enforced Hill-climbing finds solutions to all of these prob-
lems, including the sokoban instance containing deadlocks.

6 EMPIRICAL RESULTS

For empirical evaluation, we implemented the Enforced Hill-
climbing algorithm, using relaxed plans to evaluate states and to
determine helpful actions, in C. We call the resulting planning sys-
tem FF, which is short for FAST-FORWARD planning system. All
running times for FF are measured on a Sparc Ultra 10 running at
350 MHz, with a main memory of 256 M Bytes. Where possible,
i.e., for those planners that are publicly available, the running times
of other planners were measured on the same machine. We indicate
run times taken from the Literature in the text. All planners were
run with the default parameters, unless otherwise stated in the text,
and all benchmark problems are the standard examples taken from
the Literature. Some benchmark problems have been modified in or-
der to show how planners scale to bigger instances. We explain the
modifications made, if any, in the text. Dashes indicate that the cor-
responding planner failed to solve that problem within half an hour.

6.1 Thelogistics Domain

This is a classical domain, involving the transportation of packets
via trucks and airplanes. There are two well known test suites. One
has been used in the 1998 AIPS planning systems competition, the
other one is part of the BLACKBOX distribution. The problems in
the competition suite are very hard. In fact, they are so hard that,
up to date, no planner has been reported to solve them all. FAST-
FORWARD is the first one that does. See Figure 4, showing also the
results for GRT [12] and HSP-r [2], which are—as far as the author
knows—the two best other domain independent logistics planners at
the time being.2

HSP-r GRT FF
problem time steps time steps time steps

prob-01 0.36 35 0.28 30 0.06 27
prob-02 3.13 36 1.32 34 0.19 32
prob-03 25.45 64 5.55 60 0.71 54
prob-04 50.13 63 19.28 69 0.98 58
prob-05 0.62 27 0.39 26 0.08 22
prob-06 293.60 83 14.39 80 1.95 73
prob-07 6.20 37 1.76 37 0.38 36
prob-08 - - 16.37 48 2.04 41
prob-09 371.03 97 50.48 98 2.08 91
prob-10 287.64 121 23.13 117 3.20 103
prob-11 4.58 34 1.54 36 0.21 30
prob-12 - - 43.06 48 2.01 41
prob-13 - - 85.58 79 7.73 67
prob-14 - - 60.20 104 6.97 98
prob-15 19.52 120 67.50 106 1.27 93
prob-16 92.75 69 31.58 62 1.23 55
prob-17 29.35 61 12.19 53 0.63 44
prob-18 - - 335.05 193 50.76 167
prob-19 - - 238.98 174 16.26 151
prob-20 - - 324.12 169 24.40 139
prob-21 - - 294.23 120 8.93 102
prob-22 - - - - 246.05 282
prob-23 100.67 145 16.86 118 3.84 126
prob-24 - - 98.54 49 4.17 40
prob-25 - - - - 106.23 181
prob-26 - - - - 71.15 183
prob-27 - - - - 71.26 141
prob-28 - - - - 679.43 265
prob-29 - - - - 589.75 323
prob-30 - - - - 62.4 131

Figure 4. Results of the three domain independent planners best suited for
logistics problems on the competition suite. Times are in seconds, steps

counts the number of actions in a sequential plan. For HSP-r, the weighting
factor W is set to 5, as was done in the experiments described by Bonet and

Geffner in [2].

2 It is important to distinct the results shown in Figure 4 for HSP-r from
those reported by Bonet and Geffner [2]. Those results were taken on the
problems from the BLACKBOX distribution, while our results are taken on
the competition test suite.

The times for GRT in Figure 4 are from the paper by Refanidis
and Vlahavas [12], where they are measured on a Pentium 300 with
64 M Byte main memory. FF outperforms both HSP-r and GRT
by an order of magnitude. Also, it finds shorter plans than the other
planners.

We also ran FF on the benchmark problems from the BLACKBOX

distribution suite, and it solved all of them in less than half a second.
Compared to the results shown by Bonet and Geffner [2] for these
problems, FF was between 2 and 10 times faster than HSP-r, finding
shorter plans in all cases.

6.2 Mixed classical Problems

FAST-FORWARD shows competitive behavior on all commonly used
benchmark domains. To exemplify this, we show a table of running
times on a variety of different domains in Figure 5, comparing FF
against a collection of state-of-the-art planning systems: IPP [8],
STAN [9], BLACKBOX [7], and HSP [3].

In Figure 5, the planning problems shown are the following. The
tyreworld problem was originally formulated by Russell, and asks
the planner to replace a flat tire. The problem is modified in a natural
way so as to make the planner replace n flat tires. FF is the only
planner that is capable of replacing more than three tires, scaling up
to much bigger problems.

The hanoi problems make the planner solve the well known Tow-
ers of Hanoi problem, with n discs to be moved. FF also outperforms
the other planners on these problems.

The sokoban problem encodes a small instance of a well known
computer game, where a single stone must be pushed to its goal posi-
tion. Although the problem contains deadlocks, FF has no difficulties
in solving it.

The manhattan domain was first introduced by McDermott [10]. In
these problems, the planner controls a robot which moves on a n�n

grid world, and has to deal with different kinds of keys and locks. The
original problem taken from [10] corresponds to the mh-11 entry in
Tabular 5, where the robot moves on a 11�11 grid. The other entries
refer to problems that have been modified to encode 7 � 7, 15 � 15

and 19� 19 grid worlds, respectively. FF easily handles all of them,
finding slightly suboptimal plans.

Finally, the blocksworld problems in Figure 5 are benchmark ex-
amples taken from [6]. FF outperforms the other planners in terms of
running time as well as in terms of solution length.

7 RELATED WORK

The closest relative to the work described in this paper is, quite obvi-
ously, the HSP system [3]. In short, HSP does Hill-climbing search,
with the heuristic function

h(S) :=

X
g2G

weightS(g)

The weight of a fact with respect to a state S is, roughly speaking,
the minimum over the sums of the precondition weights of all actions
that achieve it. The weights are obtained as a side effect of doing
exactly the same fixpoint computation as we do. The main problem
in HSP is that the heuristic needs to be recomputed for each single
search state, which is very time consuming. Inspired by HSP, a few
approaches have been developed that try to cope with this problem,
like HSP-r [2] and the GRT-planner [12].

The authors of HSP themselves handle the problem by sticking to
their heuristic, but changing the search direction, going backwards

IPP STAN BLACKBOX HSP FF
domain problem time steps time steps time steps time steps time steps

tyreworld fixit-1 0.04 19 0.10 19 0.43 19 0.35 23 0.04 19
tyreworld fixit-2 11.29 30 1.25 30 114.32 30 - - 0.09 30
tyreworld fixit-3 - - - - 933.14 41 - - 0.20 41
tyreworld fixit-4 - - - - - - - - 0.42 52

hanoi tower-3 0.03 7 0.03 7 0.23 7 0.31 7 0.01 7
hanoi tower-5 0.11 31 0.27 31 680.6 31 2.04 31 0.09 31
hanoi tower-7 1.93 127 6.10 127 - - 23.18 163 0.52 127
hanoi tower-9 39.31 511 230.20 511 - - - - 6.45 511

sokoban sokoban-1 1.15 25 1.51 25 1283.29 25 13.87 29 0.22 25

manhattan mh-7 4.82 35 20.04 35 - - 1.12 35 0.09 38
manhattan mh-11 65.12 40 1013.96 40 - - 13.31 40 0.26 43
manhattan mh-15 - - - - - - - - 0.64 59
manhattan mh-19 - - - - - - - - 1.53 87

blocksworld bw-large-a 0.47 10 0.57 10 10.30 10 0.78 11 0.04 7
blocksworld bw-large-b 2.20 14 4.04 14 160.14 14 1.54 13 0.10 10
blocksworld bw-large-c 88.17 25 267.08 26 - - 4.34 20 0.56 16
blocksworld bw-large-d 362.19 33 - - - - 11.36 27 1.42 20

Figure 5. Running times and quality (in terms of number of actions) of plans for FF and state-of-the-art planners on various classical domains. All planners
are run with the default parameters, except HSP, where loop checking needs to be turned on.

from the goal in HSP-r instead of forward from the initial state in
HSP. This way, they need to compute a weight value for each fact
only once, and simply sum the weights up for a state later during
search.

The authors of [12] invert the direction of the HSP heuristic in-
stead. While HSP computes distances by going towards the goal,
GRT goes from the goal to each fact, and estimates its distance. The
function that then extracts, for each state during forward search, the
state's heuristic estimate, uses the pre-computed distances as well as
some information on which facts will probably be achieved simulta-
neously.

For the FAST-FORWARD planning system, a somewhat paradox-
ical extension of HSP has been made. Instead of avoiding the ma-
jor drawback of the HSP strategy, we even worsen it, at first sight:
the heuristic keeps being fully recomputed for each search state, and
we even put some extra effort on top of it, by extracting a relaxed
solution. However, the overhead for extracting a relaxed solution is
marginal, and the relaxed plans can be used to prune unpromising
branches from the search tree.

To verify where the enormous run time advantages of FF com-
pared to HSP come from, we ran HSP using Enforced Hill-
climbing search with and without helpful actions pruning, as well as
FF without helpful actions on the problems from our test suite. Due
to space restrictions, we can not show our findings in detail here. It
seems that the major steps forward are our variation of Hill-climbing
search in contrast to the restart techniques employed in HSP, as
well as the helpful actions heuristic, which prunes most of the search
space on many problems. Our different heuristic distance estimates
seem to result in shorter plans and slightly, about a factor two, better
running times, when one compares FF to a version of HSP that uses
Enforced Hill-climbing search and helpful actions pruning. We did
not yet find the time to do these experiments the other way round,
i.e., integrate our heuristic into the HSP search algorithm, as this
would involve modifying the original HSP code, which means a lot
of implementation work.

There has been at least one more approach in the Literature where
goal distances are estimated by ignoring the delete lists of the oper-
ators. In [10], Greedy Regression-Match Graphs are introduced. In a
nutshell, these estimate the goal distance of a state by backchaining
from the goals until facts are reached that are TRUE in the current
state, and then counting the estimated minimal number of steps that
are needed to achieve the goal state.

To the best of our understanding, the action chains that lead to
a state's heuristic estimate in [10] are similar to the relaxed plans
that we extract. However, the backchaining process seems to be quite

costly. For example, building the Greedy Regression-Match Graph
for the initial state of the manhattan world 11 � 11 grid problem is
reported to take 25 seconds on a Sparc 2 station. For comparison, we
ran FF on a Sparc 4 station. Finding a relaxed plan for the initial state
takes less than one hundredth of a second, i.e., the time measured is
0:00 CPU seconds.

The helpful actions heuristic shares some similarities with what
is known as relevance from the literature [11]. The main difference
is that relevance in the usual sense refers to what is useful for solv-
ing the whole problem. Being helpful, on the other hand, refers to
something that is useful in the next step.

8 CONCLUSION AND OUTLOOK

In this paper, we presented two heuristics for domain independent
STRIPS planning, one estimating the distance of a state to the goal,
and one collecting a set of promising actions. Both are based on an
extension of the heuristic that is used in the HSP system. We showed
how these heuristics can be used in a variation of Hill-climbing
search, and we have seen that the algorithm is complete on the class
of deadlock-free domains. We collected empirical evidence that the
resulting planning system is among the fastest planners in existence
nowadays, outperforming the other state-of-the-art planners on quite
a range of domains, like the logistics, manhattan and tyreworld prob-
lems.

To the author, the most exciting question is this: Why is the heuris-
tic information obtained in this simple manner so good? It is not re-
ally difficult to construct abstract examples where the approach pro-
duces arbitrarily bad plans, or uses arbitrarily much time, so why
does it almost never go wrong on the benchmark problems? Why
is the relaxed solution always so close to a real solution, except for
the Tower of Hanoi problems? Is it possible to define a notion of
“simple” planning domains, where relaxed solutions have desirable
properties?

First steps into that direction seem to indicate that, in fact, there
might be some underlying theory in that sense. In particular, it can
be proven that the Enforced Hill-climbing algorithm finds optimal
solutions when the heuristic used is goal-directed in the following
sense:

h(S) < h(S
0
)) min(S) < min(S

0
)

Here, min(S) denotes the length of the shortest possible path from
state S to a goal state, i.e., Enforced Hill-climbing is optimal when
heuristically better evaluated states are really closer to the goal.

It can also be proven that the length of an optimal relaxed solution
is, in fact, a goal-directed heuristic in the above sense on the prob-

lems from the gripper domain that was used in the 1998 planning
systems competition. We have not yet, however, been able to iden-
tify some general structural property that implies goal-directedness
of optimal relaxed solutions.

Apart from these theoretical investigations, we want to extend the
algorithms to handle richer planning languages than STRIPS, in par-
ticular ADL and resource constrained problems.

ACKNOWLEDGEMENTS

The author thanks Bernhard Nebel for helpful discussions and sug-
gestions on designing the paper. Thanks also go the the referees for
their comments which helped improve the paper.

REFERENCES
[1] A. Blum and M. Furst. Fast planning through planning graph analysis.

Artificial Intelligence, 90(1–2):279–298, 1997.
[2] B. Bonet and H. Geffner. Planning as heuristic search: New results. In

Proceedings of the 5th European Conference on Planning, pages 359–
371, 1999.

[3] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selec-
tion mechanism for planning. In Proceedings of the 14th National Con-
ference of the American Association for Artificial Intelligence, pages
714–719, 1997.

[4] T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1–2):165–204, 1994.

[5] J. Hoffmann. A heuristic for domain independent planning and its use
in a fast greedy planning algorithm. Technical Report 133, Albert-
Ludwigs-University Freiburg, 2000.

[6] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the 14th National Con-
ference of the American Association for Artificial Intelligence, pages
1194–1201, 1996.

[7] H. Kautz and B. Selman. Unifying SAT-based and graph-based plan-
ning. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 318–325, 1999.

[8] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending plan-
ning graphs to an ADL subset. In Proceedings of the 4th European
Conference on Planning, pages 273–285, 1997.

[9] D. Long and M. Fox. Efficient implementation of the plan graph in
STAN. Journal of Artificial Intelligence Research, 10:87–115, 1999.

[10] D. McDermott. A heuristic estimator for means-ends analysis in plan-
ning. In Proceedings of the 3rd International Conference on Artificial
Intelligence Planning Systems, pages 142–149, 1996.

[11] B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and
operators in plan generation. In Proceedings of the 4th European Con-
ference on Planning, pages 338–350, 1997.

[12] I. Refanidis and I. Vlahavas. GRT: A domain independent heuristic for
strips worlds based on greedy regression tables. In Proceedings of the
5th European Conference on Planning, pages 346–358, 1999.

