
Heuristic Search Planning with BDDs
Stefan Edelkamp

Institut f ür Informatik
Am Flughafen 17
D-79110 Freiburg

edelkamp@informatik.uni-freiburg.de

Abstract. In this paper we study traditional and enhanced BDD-
based exploration procedures capable of handling large planning
problems. On the one hand, reachability analysis and model checking
have eventually approached AI-Planning. Unfortunately, they typi-
cally rely on uninformed blind search. On the other hand, heuris-
tic search and especially lower bound techniques have matured in
effectively directing the exploration even for large problem spaces.
Therefore, with heuristic symbolic search we address the unexplored
middle ground between single state and symbolic planning engines
to establish algorithms that can gain from both sides. To this end we
implement and evaluate heuristics found in state-of-the-art heuristic
single-state search planners.

1 Introduction

One currently very successful trend in deterministic fully-automated
planning is heuristic single-state space search. The search space in-
corporates states as lists of instantiated predicates (also called atoms
or fluents). The success of the heuristic search correlates with the
quality of the estimate; the more informed the heuristic the better
the achieved results. Heuristic search planners have outperformed
other approaches on a sizable collection of deterministic domains.
In the fully automated track of the AIPS-2000 planning competition1

chaired by Fahim Baccus the System FF (by Hoffmann) was awarded
for outstanding performance while HSP2 (by Geffner and Bonet),
STAN (by Fox and Long), and MIPS (by Edelkamp and Helmert)
were placed shared second.

The only available information on the implementation of remain-
ing awarded planner System R (by Lin) is the contributed description
by the author, reading as follows: System R is based on regression,
and solves a goal one at a time. Briefly, given a conjunctive goal G,
it chooses the first subgoal g that has not been satisfied yet in the cur-
rent state, and work on it. Once it is achieved, say by P , it progresses
the current state through P to a new current state, moves g to the
end of G, and recursively tries to find a plan for the new G. When
working on g, it regresses g over an action to a conjunctive goal G0,
and tries to achieve G0 recursively. Subsequently, the solution quality
in System R is not as good as for the other planners and has difficul-
ties with some domains, where the goals were not serializable, but
in some domains (like Logistics and Block's World) the system can
cope with very large problem instances.

Historically, the first heuristic search planner was Bonet, Loerincs
and Geffner's HSP [4], which also competed in AIPS-1998. HSP

1 See http://www.cs.toronto.edu/aips2000 for details.

computes the heuristic values of a state by summing (or maximizing)
depth values for each fluent for an overestimating (or admissible)
estimate. These values are retrieved from the fix point of a relaxed
exploration. Since the technique is similar to the first phase of build-
ing the layered graph structure in Graphplan (developed by Blum
and Furst [2]), HSPr [6] (the suffix indicates a regression/backward
search engine) has been extended to exclude so called mutuals sim-
ilar to the original planning graph algorithm. In opposite to the par-
allel solutions obtained in Graphplan, HSP(r) produce sequential
solutions. In the most recent extension to the planner, Haslum and
Geffner [27] generalize the (admissible) estimator by dynamic pro-
gramming parameterized with an order value m. For large values of
m the estimate hm converges to the optimal heuristic estimate h�.
In case m = 1 the new estimator reduces to maximizing the flu-
ent values, for m = 2 the authors introduce the max-pair heuristic
computing a distance value to the goal for each pair of atoms. This
is the heuristic incorporated in Geffner and Bonet's planner HSP2 at
competition time. The underlying search algorithm is a weighted ver-
sion of IDA* [42], scaling the heuristic with respect to the generated
path length with a factor of two for a better performance by the cost
of non-optimal solutions. Due to the observed overhead at run-time,
high-order heuristics have not been applied yet. As a straight for-
ward extension to the max-pair heuristic it might be conjectured that
for pairs of fluents and their corresponding relaxed solution length a
weighted bipartite minimum-matching algorithm (available in cubic
time) as applied in Sokoban [31] might lead to a better lower bound
approximation.

The success of HSP has inspired the planners GRT by Refanidis
and Vlahavas [43] and FF by Hoffmann [28] and influenced the de-
velopment of the planners STAN and MIPS.

GRT abbreviates a heuristic search planner based on greedy re-
gression tables to trace the responsibility of a fact being achieved.
The inference of a heuristic value for each state is thus found in a
backward analysis of the fluent space. The regression table is closely
related to regression-match graphs [40] estimating the goal distance
of a state. This approach ignores any conflict and then counts the
minimal number of steps. Despite new ideas such as Exploiting State
Constraints [27], in AIPS-2000 the heuristic of GRT was too weak
to compete with the improvements applied in HSP2 and in FF.

The winner FF (for fast-forward planning) solves a relaxed plan-
ning problem for every encountered state in a combined forward and
backward traversal. Therefore, the FF-Heuristic is an elaboration to
the HSP-Heuristic, since the latter only considers the first phase.
The efforts in computing a very accurate heuristic estimate correlates
with data in solving single agent challenges like the 24-Puzzle [37],



Sokoban [31], and Rubik's Cube [36] and suggests that even involved
work for improving the heuristic pays off. With enforced hill climb-
ing it further employs another search strategy and drastically reduces
the explored portion of search space. It makes use of the fact that
phenomena like big plateaus or local minima — with respect to the
heuristic described above — do not occur very often in benchmark
planning problems.

STAN's success is due to building a hybrid of two strategies: The
original GRAPHPLAN-based STAN algorithm and a forward plan-
ner using a heuristic function based on the length of the relaxed plan
(as in HSP and FF). STAN makes is the use of domain analysis tech-
niques to select automatically between these strategies. Therefore,
the major contribution is the automatic synthesis and use of generic
types to choose an appropriate algorithm for the specified problem
instance at hand [39].

An orthogonal approach in tackling huge search spaces is a sym-
bolic representation of sets of states. The SATPLAN approach by
Kautz and Selman [32] has shown that representional issues can be
resolved by parsing the planning domain into a collection of Boolean
formulae (one for each depth level). The system BLACKBOX (a hy-
brid planner based on merging SATPLAN with GRAPHPLAN [33])
performed well on AIPS-1998, but failed to solve as many problems
as the heuristic search planners on the domains in AIPS-2000. How-
ever, it should be denoted that the results of SATPLAN (GRAPH-
PLAN) are optimal in the number of sequential (parallel) steps, while
heuristic search planners tend to overestimate in order to cope with
state space sizes of 1020 and beyond.

Although efficient satisfiability solvers have been developed in the
last decade, the blow-up in the size of the formulae even for simple
planning domains calls for a concise representation. This leads to
reduced ordered binary decision diagrams (BDDs) [7], an efficient
data structure for Boolean functions. Through their unique repre-
sentation BDDs are effectively applied to the synthesis and verifi-
cation of hardware circuits [8] and incorporated within the area of
model checking [9]. Nowadays BDDs are a fundamental tool in var-
ious research areas of computer science and very recently BDDs are
encountering AI-research topics like heuristic search [21] and plan-
ning [25]. The diverse research aspects of traditional STRIPS plan-
ning [22], non-deterministic planning [10], universal planning [12],
and conformant planning [11] indicate the wide range of BDD-
related planning.

Our planner MIPS uses BDDs to compactly store and maintain
sets of propositionally represented states. The concise state repre-
sentation is inferred in an analysis prior to the search and, by utiliz-
ing this representation, accurate reachability analysis and backward
chaining are carried out without necessarily encountering exponen-
tial representation explosion. MIPS was originally designed to prove
that BDD-based exploration methods are an efficient means for im-
plementing a domain-independent planning system with some nice
features, especially guaranteed optimality of the plans generated. If
problems become harder and information on the solution length is
available, MIPS invokes its incorporated heuristic single state search
engine (similar to FF), thus featuring two entirely different planning
algorithms, aimed to assist each other on the same state representa-
tion. Note that implementation issues of MIPS are discussed in [20].

The other two BDD planners in AIPS-2000, BDDPLAN by
Stör [29] and PROPPLAN by Fourman [24], lack the precompiling
phase of MIPS, therefore, were too slow for traditional STRIPS prob-
lems. Moreover a single state extension to their planners is not being
provided. In the generalized ADL settings PROPPLAN has proven
to be competive even with the FF approach, which solves more prob-

lems in less time, but fails to find optimal solutions.
This paper extends the idea of BDD representations and explo-

ration in the context of heuristic search. The heuristic estimate is
based on subpositions (called patterns) calculated prior to the search
representing all (state,estimate)-pairs in one BDD. Therefore, the
heuristic is a form of a pattern database with planning patterns cor-
responding to (one or a collection of) fluents. This heuristic will be
integrated into a previously published BDD-based version of the A*
algorithm [26], called BDDA* [21]. Moreover, we alter the concept
of BDDA* to pure heuristic search which seems to be more suited at
least to some planning problems. Thereby, we allow non-optimistic
heuristics and sacrifice optimality but succeed in searching larger
problem spaces.

We have structured the paper as follows: First of all, we give a
simple planning example and briefly introduce BDDs basics. There-
after, we turn to the exploration algorithms, starting with blind search
then turning to the directed approach BDDA*, its adaption to plan-
ning, and its refinement for pure heuristic search. We end with some
experimental data and draw conclusions.

2 BDD Representation

Let us consider a simple example of a planning problem for a truck to
deliver one package from Los Angeles to San Francisco. The initial
state (in STRIPS like notation) is given by (PACKAGE package),
(TRUCK truck), (LOCATION los-angeles), (LOCATION
san-francisco), (AT package los-angeles), and (AT
truck los-angeles) while the goal state is specified by (AT
package san-francisco). We have three operator schemas in
the domain, namely LOAD (for loading a truck with a certain package
at a certain location), UNLOAD (the inverse operation), and DRIVE
(a certain truck from one city to another). The operator schemas are
expressed in form of preconditions and effects.

The precompiler to infer a small state encoding consists of three
phases [19]. In a first constant predicate phase it observes that the
predicates PACKAGE, TRUCK and LOCATION remain unchanged by
the operators. In the next merging phase the precompiler determines
that at and in should be encoded together, since a PACKAGE
can exclusively be at a LOCATION or in a TRUCK. By fact space
exploration (a simplified but complete exploration of the planning
space) the following fluent facts are generated: (AT package
los-angeles), (AT package san-francisco), (AT
truck los-angeles), (AT truck san-francisco),
and (IN package truck). This leads to a total encoding length
of three bits. Using two bits x0 and x1 the fluents (AT package
los-angeles), (AT package san-francisco), and (IN
package truck) are encoded with 00, 01, and 10, respec-
tively, while the variable x2 represents the fluents (AT truck
los-angeles) and (AT truck san-francisco).

Therefore, a Boolean representation of the start state is given by
x0 ^ x1 ^ x2 while the set of goal states is simply formalized
with the expression x0 ^ x1. More generally, for a set of states S
the characteristic function �S(a) evaluates to true if a is the binary
encoding of one state x in S. As the formulae for the start and the
goal states indicate, the symbolic representation for a large set of
states is typically smaller than the cardinality of the represented set.

Since the satisfiability problem for Boolean formulae is NP hard,
binary decision diagrams are used to for their efficient and unique
graph representation. The nodes in the directed acyclic graph struc-
ture are labeled with the variables to be tested. Two outgoing edges
labeled true and false direct the evaluation process with the result



found at one of the two sinks. We assume a fixed variable ordering
on every path from the root node to the sink and that each variable
is tested at most once. The BDD size can be exponential in the num-
ber of variables but, fortunately, this effect rarely appears in practice.
The satisfiability test is trivial and given two BDDs Gf and Gg and
a Boolean operator 
, the BDD Gf
g can be computed efficiently.
The most important operation for exploration is the relational pro-
duct of a vector of variables v and two Boolean functions f and g. It
is defined as 9v (f ^ g). Since existential quantification of one vari-
able xi in a Boolean function f is equal to disjunction fxi _ fxi , the
quantification of v results in a sequence of subproblem disjunctions.
Although computing the relational product is NP-hard in general,
specialized algorithms have been developed leading to an efficient
computation for many practical applications.

An operator can also be seen as an encoding of a set. The transition
relation T is defined as the disjunction of the characteristic functions
of all pairs (x0; x) with x0 being the predecessor of x. For the exam-
ple problem, (LOAD package truck los-angeles) corre-
sponds to the pair (00j0; 10j0) and (LOAD package truck
san-francisco) to (01j1; 10j1). Subsequently, the UNLOAD op-
erator is given by (10j0; 00j0) and (10j1; 10j1). The DRIVE action
for the truck is represented by the strings (00j�; 00j�) (01j�; 01j�),
and (10�; 10j�) with � 2 f0; 1g. For a concise BDD representation
of the transition relation (cf. Figure 1) the variable ordering is cho-
sen that the set of variable in x0 and x are interleaved, i.e. given in
alternating order.

1

x
0
0

x0

x
0
1

x1

x0

x1

x
0
1

x
0
2

x2x2

x
0
2

x1

x
0
1

x1x1

x
0
1

Figure 1. The transition relation for the example problem. For the sake of
clarity, the false sink has been omitted. Dashed lines and solid lines indicate

edges labeled false and true, respectively.

The weighted transition relation T (w; x0; x) is a straight-forward
extension to weighted problem graphs and evaluates to 1 if and only
if the step from x0 to x has costs w (encoded in binary).

3 BDD-Based Blind Search

Let Si be the set of states reachable from the initial state s in i steps,
initialized by S0 = fsg. The following equation determines �Si
given both �Si�1 and the transition relation:

�Si(x) = 9x
0
(�Si�1(x

0
) ^ T (x

0
; x)):

The formula calculating the successor function is a relational prod-
uct. A state x belongs to Si if it has a predecessor x0 in the set Si�1

and there exists an operator which transforms x0 into x. Note that on
the right hand side of the equation � depends on x0 compared to x on
the left hand side. Thus, it is necessary to substitute x with x0 in �Si
beforehand, which can be achieved by a simple textual replacement
of the node labels in the diagram structure.

In order to terminate the search, we successively test, whether a
state is represented in the intersection of the set Si and the set of
goal states G by testing the identity of �Si ^�G with the trivial zero
function. Since we enumerated S0; : : : ; Si�1 the iteration index i is
known to be the optimal solution length.

Let Open be the representation of the search horizon and Succ the
BDD for the set of successors. Then the algorithm can be realized as
the pseudo-code Figure 2 suggests.

procedureBreadth-First-Search
Open �fsg
do

Succ 9x0 (Open(x0) ^ T (x0; x))
Open Succ

while (Open ^ �G � 0)

Figure 2. Breadth-first search implemented with BDDs.

This simulates a breadth-first exploration and leads to three itera-
tions for the example problem. We start with the initial state repre-
sented by a BDD of three inner nodes for the function x0^ x1^ x2.
After the first iteration we get a BDD size of four representing three
states and the function (x0 ^ x1) _ (x0 ^ x1 ^ x2). The next
iteration leads to four states in a BDD of one internal node for x1,
while the last iteration results in a BDD containing a goal state.

3.1 Bidirectional Search

We start with the goal set B0 = G and iterate until we encounter
the start state. In backward search we take advantage of the fact
that T has been defined as a relation. Therefore, we iterate accord-
ing to the formula �Bi(x

0) = 9x (�Bi�1 (x) ^ T (x
0; x)). In bidi-

rectional breadth-first search forward and backward search are car-
ried out concurrently. On the one hand we have the forward search
frontier Ff with F0 = fsg and on the other hand the backward
search frontier Bb with B0 = G. When the two search frontiers
meet (�Ff ^ �Bb 6� 0) we have found an optimal solution of length
f + b. With the two horizons fOpen and bOpen the algorithm can be
implemented as shown in Figure 3.

The choice of the search direction (function call forward) is cru-
cial for a successful exploration. There are three simple criteria: BDD
size, the number of represented states, and smaller exploration time.
Since the former two are not well suitable to predict the computa-
tional efforts of the next iteration the third criterion is preferred.

3.2 Forward Set Simplification

The introduction of a list Closed containing all states ever expanded
is a very common approach in single state exploration to avoid du-
plicates in the search. Usually, the memory structure is realized as a
hash table, which in this context is referred by the term transposi-
tion table. For symbolic search this technique is called forward set
simplification (cf. Figure 4).



procedureBidirectional Breadth-First-Search
fOpen �fsg; bOpen �G
do

if (forward())
Succ 9x0 (fOpen(x0) ^ T (x0; x))
fOpen Succ

else
Succ 9x (bOpen(x) ^ T (x0; x))
bOpen Succ

while (fOpen ^ bOpen � 0)

Figure 3. Bidirectional Breadth-first search implemented with BDDs.

procedureForward Set Simplification
Closed Open �fsg
do

Succ 9x0 (Open(x0) ^ T (x0; x))
Open Succ ^ : Closed
Closed Closed _ Succ

while (Open ^ �G � 0)

Figure 4. Breadth-first search with forward set simplification implemented
with BDDs.

The effect in the given example is that after the first iteration the
number of states shrinks from three to two while the new BDD for
(x0^ x1^ x2) _ (x0^ x1^ x2) has five inner nodes. For the sec-
ond iteration only one newly encountered state is left with three inner
BDD nodes representing x0 ^ x1 ^ x2. Forward set simplification
is also used to terminate the search in case of failure in a complete
planning space exploration. Note that any set in between the succes-
sor set Succ and the simplified successor set Succ � Closed will be
a valid choice for the horizon Open in the next iteration. Therefore,
one may choose a set R that minimizes the BDD representation in-
stead of minimizing the set of represented states. Without going into
involved details we denote that such image size optimizing operators
are available in several BDD packages [14].

4 BDD-Based Directed Search

Before turning to the BDD-based algorithm for directed search we
take a brief look at Dijkstra's single-source shortest path algorithm,
Dijkstra for short, which finds a solution path with minimal length
within a weighted problem graph [17]. Dijkstra differs from breadth-
first search in ranking the states next to be expanded. A priority queue
is used, in which the states are ordered with respect to an increasing
f -value. Initially, the queue contains only the initial state s. In each
step the state with the minimum merit f is dequeued and expanded.
Then the successor states are inserted into the queue according to
their newly determined f -value. The algorithm terminates when the
dequeued element is a goal state. The f -value of this state is the
length of the minimal solution path.

As said, BDDs allow sets of states to be represented very effi-
ciently. Therefore, the priority queue Open can be represented by a
BDD based on tuples of the form (value, state). The variables should

be ordered in a way which allows the most significant variables to be
tested at the top. The variables for the encoding of the value should
have smaller indices than the variables encoding the state, since this
encoding leads to small BDDs and allows an intuitive understanding
of the BDD and its association with the priority queue.

procedureSymbolic-Version-of-Dijkstra
Open(f; x) (f = 0) ^ �S0(x)

do
fmin = minff j f ^ Open 6= ;g
Min(x) 9f (Open ^ f = fmin)

Rest(f; x) Open ^ : Min
Succ(f; x) 9x0; w (Min(x0) ^

T (w; x0; x) ^ add(fmin; w; f))

Open Rest _ Succ
while (Open ^ �G � 0)

Figure 5. Dijkstra's single-source shortest-path algorithm implemented
with BDDs.

The symbolic version of Dijkstra (cf. Figure 5) now reads as fol-
lows. The BDD Open is set to the representation of the start state with
value zero. Until we find a goal state in each iteration we extract all
states with minimal f -value fmin, determine the successor set and
update the priority queue. Successively, we compute the minimal f -
value fmin, the BDD Min of all states in the priority queue with value
fmin, and the BDD of the remaining set of states. If no goal state
is found, the variables in Min are substituted as above before the
(weighted) transition relation T (w; x0; x) is applied to determine the
BDD for the set of successor states. To attach new f -values to this set
we have to retain the old f -value fmin and to calculate f = fmin+w.
Finally, the BDD Open for the next iteration is obtained by the dis-
junction of the successor set with the remaining queue.

It remains to show how to perform the arithmetics using BDDs.
Since the f -values are restricted to a finite domain, the Boolean func-
tion add with parameters a, b and c can be built being true if c is equal
to the sum of a and b. A recursive calculation of add(a; b; c) should
be prefered:

add(a; b; c) = ((b = 0) ^ (a = c))_

9 b0; c0 (inc(b0; b) ^ inc(c0; c) ^ add(a; b0; c0));

with inc representing all pairs of the form (i; i + 1). Therefore,
symbolic breadth-first-search (with forward set simplification) can
be applied to determine the fixpoint of add (subject to a certain pre-
defined finite domain of the variables).

4.1 Heuristic Pattern Databases

For symbolically constructing the heuristic function a simplification
T 0 to the transition relation T that regains tractability of the state
space is desirable. However, obvious simplification rules might not
be available. Therefore, in heuristic search we often consider relax-
ations of the problem that result in subpositions. More formally, a
state v is subposition of another state u if and only if the character-
istic function of u logically implies the characteristic function of v,
e.g., �fug = x1 ^ x2 ^ x3 ^ x4 ^ x5 and �fvg = x2 ^ x3 results
in �fug ) �fvg. As a simple example take the Manhattan distance



in sliding tile solitaire games like the famous Fifteen-puzzle. It is the
sum of solutions of single tile problems that occur in the overall puz-
zle. The improvement of the Manhatten distance incorporates linar
conflicts due to the interplay of two tiles has lead to solutions to ran-
dom instances of the 24-Puzzle with a state space of 25!=2 � 1025

states.
More generally, a heuristic pattern data base is a collection of

pairs of the form (estimate, pattern) found by optimally solving prob-
lem relaxations that respect the subposition property [15]. The solu-
tion lengths of the patterns are then combined to an overall heuristic
by taking the maximum (usually leading to an admissible heuristic)
or the sum of the individual values (in which case we get an overes-
timization).

Heuristic pattern data bases have been effectively applied in the
domains of Sokoban [31], to the Fifteen-Puzzle [15], and to Rubik's
Cube [36]. In single-state search heuristic pattern databases are im-
plemented by hash table, but in symbolic search we have to con-
struct the estimator symollically, only using logical combinators and
Boolean quantification.

Since heuristic search itself can be considered as the matter of
introducing lower bound relaxations into the search process, in the
following we will maximize the relaxed solution path values. The
maximizing relation max(a; b; c), evaluates to 1 if c is the maximum
of a and b and is based on the relation greater, since

max(a; b; c) = (greater(a; b) ^ (a = c)) _

(:greater(a; b) ^ (b = c))

.
The relation greater(a; b) itself might be implemeted by existen-

tial quantifying the add relation:

greater(a; b) = 9t add(b; t; a)

Next we will find a way to automatically infer the heuristic es-
timate. To combine n fluent pattern p1; : : : ; pn with estimated dis-
tances d1; : : : ; dn to the goal we use n+1 additional slack variables
t0; : : : ; tn which are existenially quantified later on. We define sub-
functions Hi of the form

Hi(ti; ti+1; state) = (: pi ^ (ti = ti+1))_

(pi ^ max(di; ti; ti+1));

with Hi(ti; ti+1; state) denoting the following relation: If the ac-
cumulated heuristic value up to fluent i is ti, then the accumulated
value including fluent i is ti+1. Therefore, we can combine the sub-
functions to the overall heuristic estimate as follows:

H(estimate,state) = 9 t1; : : : ; tn (t0 = 0)^H(tn; estimate,state)^

n�1^

i=0

Hi(ti; ti+1; state)

.
In some problem graphs subpositions or patterns might constitute

a feature in which every position containing it is unsolvable. These
deadlocks are frequent in directed search problems like Sokoban and
can be learned domain or problem specifically. Deadlocks are heuris-
tic patterns with a infinite heuristic estimate. Therefore, a deadlock
table DT is the disjunction of the characteristic functions according
to subpositions that are unsolvable.

The integration of deadlock tables in the search algorithm is quite
simple. For the BDD for DT we assign the new horizon Open as

Open ^ :(Open) DT)

which is equivalent to

Open Open ^ :DT

.

4.2 Two Different Heuristics

Patterns in planning are fluents. The estimated distance of each single
fluent p to the goal is a heuristic value associated with p. We examine
two heuristics.

4.2.1 HSP-Heuristic:

In HSP the values are recursively calculated by the formula h(p) =
minfh(p); 1 + h(C)g where h(C) is the cost of achieving the con-
junct C, which in case of HSPr is the list of preconditions. For deter-
mining the heuristic the planning space has been simplified by omit-
ting the delete effects. The algorithms in HSP and HSPr are variants
of pure heuristic search incorporated with restarts, plateau moves,
and overestimation.

The exploration phase to minimize the state description length in
our planner has been extended to output an estimate h(p) for each
fluent p. Since we avoid duplicate fluents in the breadth-first fact-
space-exploration, with each encountered fluent we associate a depth
by adding the value 1 to its predecessor. The quality of the achieved
distance values are not as good as in HSPr since we are not concerned
about mutual exclusions in any form. Giving the list of value/fluent
pairs a symbolic representation of the sub-relations and the overall
heuristic is computed.

In the example we compute that (AT ball los-angeles)
and (AT truck los-angeles) have a distance of zero from
the initial state (AT truck san-francisco) (IN ball
truck) have a depth of one and (AT ball san-francisco)
has depth two. Figure 6 depicts the BDD representation of the overall
heuristic function for the example.

h0

h1 h1

x0 x0 x0

x1 x1 x1 x1 x1

x2 x2

1

Figure 6. The BDD representation for the heuristic function in the example
problem. In this case the individual pattern values have been maximized.



4.2.2 FF-Heuristic:

The main idea of FF is fairly simple: Solve the relaxed planning prob-
lem (delete-facts omitted) with GRAPHPLAN on-line for each state,
i.e., build the plan graph and extract a simplified solution by count-
ing the number of instantiated operators that at least have to fire. This
is the heuristic value. By relaxed forward and backward search one
state can usually be evaluated in less than ten milliseconds.

Since the branching factor is large (one state has up to hundreds
of successors) by determining helpful actions, only a relevant part
of all successors is considered. The overall search phase is entitled
enforced hill-climbing. Until the next smaller heuristic value is found
a breadth first search is invoked. Then the search process iterates with
one state evaluating to this value.

In our planner we have (re-)implemented the FF-approach both to
have an efficient heuristic single-state search engine at hand and to
build an improved estimate for symbolic search. Since the FF ap-
proach is based on states and not on fluents, we cannot directly infer
a symbolic version of the heuristic. We have to weaken the state-
dependent character of the heuristic down to fluents. Moreover, sim-
plifying the start state to a fluent may give no heuristic value at all,
since the goal will not necessarily be reached by the relaxed ex-
ploration. Therefore, the estimate for each fluent is calculated by
partitioning the goal state instead. Since we get improved distance
estimates with respect to the initial state, we obtain a heuristic for
backward search. However this is no limitation, since the concept of
STRIPS operators can be inverted, yielding a heuristic in the usual
direction.

In case of Block's World, any heuristic based on fluent values is
misleading, since if the block at the bottom is not correctly placed
even states with all but one satisfied subgoals are far off from the goal
state. To cope with hat problem Hoffmann proposes two different
goal ordering strategies, both based knowledge-gathering based on
exploration [35].

4.3 BDDA*

In informed search with every state in the search space we associate
a lower bound estimate h. By reweighting the edges the algorithm of
Dijkstra can be transformed into A*. The new weight ŵ is set to the
old one w minus the h-value of the source node x0, plus the value of
the target node x resulting in the equation ŵ(x0; x) = w(x0; x) �

h(x0) + h(x). The length of the shortest paths will be preserved and
no new negative weighted cycle is introduced [13]. More formally,
if we denote �(s; g) for the length of the shortest path from s to a
goal state g in the original graph, and �̂(s; g) the shortest path in the
reweigthed graph then w(p) = �(s; g) if and only if ŵ(p) = �̂(s; g):

The rank of a node is the combined value f = g+ h of the gener-
ating path length g and the estimate h. The information h allows us
to search in the direction of the goal and its quality mainly influences
the number of nodes to be expanded until the goal is reached.

In the symbolic version of A*, called BDDA*, the relational pro-
duct algorithm determines all successor states in one evaluation step.
It remains to determine their values. For the dequeued state x0 in A*
we have f(x0) = g(x0) + h(x0). Since we can access f , but usually
not g, the new value f(x) of a successor x has to be calculated in the
following way

f(x) = g(x) + h(x) = g(x
0
) + w(x

0
; x) + h(x) =

f(x0) + w(x0; x)� h(x0) + h(x):

The estimatorH can be seen as a relation of tuples (estimate, state)
which is true if and only if h(state)=estimate. We assume that H
can be represented as a BDD for the entire problem space. The cost
values of the successor set are calculated according to the equation
mentioned above. The arithmetics for formula(h0; h; w; f 0; f) based
on the old and new heuristic value (h0 and h, respectively), and the
old and new merit (f0 and f , respectively) are given as follows.

formula(h0; h; w; f 0; f) = 9 t1; t2 add(t1; h
0; f 0) ^

add(t1; w; t2) ^ add(h; t2; f):

The implementation of the algorithm BDDA* is depicted in Fig-
ure 7.

procedureBDDA*
Open(f; x) H(f; x) ^ �S0(x)

do
fmin = minff j f ^ Open 6= ;g
Min(x) 9f (Open ^ f = fmin)

Rest(f; x) Open ^ : Min
Succ(f; x) 9w; x0 (Min(x0) ^ T (w;x0; x) ^
9h0 (H(h0; x0) ^ 9h (H(h; x) ^

formula(h0; h; w; fmin; f))))
Open Rest _ Succ

while (Open ^ �G � 0)

Figure 7. Hart, Nilsson and Raphael's A* algorithm implemented with
BDDs.

Since all successor states are reinserted in the queue we expand
the search tree in best-first manner. Optimality and completeness is
inherited by the fact that given an optimistic heuristic A* will find an
optimal solution.

Given a uniform weighted problem graph and a consistent heuris-
tic the worst-case number of iterations in BDDA* is O(f�2), with
f� being the optimal solution length [21].

Preliminary results of BDDA* even in handcoded traditional
single-agent search domains are promising.

In (a moderately difficult instance to) the Fifteen-Puzzle, the 4�4
version of the well-known sliding-tile (n2 � 1)-Puzzles, a minimal
solution of 45 moves was found by BDDA* within 176 iterations
with a maximal BDD-size of 215.000 nodes representing 136.000
states. With a breadth-first search approach it was impossible to
find any solutions because of memory limitations. Already after 19
iteration-steps more than 1 million BDD-nodes were needed to rep-
resent more than 1.4 million states. Note, that the upper limit of (do-
main independent) planners are to solve some instances to the Eight-
Puzzle [41].

Sokoban was considered as a domain for AIPS-2000, but was in
favor of Freecell, the Window solitaire card game. To find the mini-
mal solution in Sokoban an efficient encoding is essential. There are
56 different fields available for the man, resulting in a binary encod-
ing of six bits. For the balls 23 positions are either not reachable or
the configuration becomes unsolvable. Therefore, 33 bits are suffi-
cient to specify for each considerable position if a ball is placed on it
or not. The BDDA* algorithm was invoked with a very poor heuris-
tic, counting the number of balls not on a goal position.

Breadth first search finds the optimal solution with a peak BDD of
75,000 nodes representing 8,400,00 states in the optimal number of



230 iterations. BDDA* with the heuristic leads to 419 iterations and
to a peak BDD of 68,000 nodes representing 4,300,00 states. Note
that even with such a poor heuristic, the number of nodes expanded
by BDDA* is significantly smaller than in a breadth-first-search ap-
proach and their representation is more memory efficient. The num-
ber of represented states is up to 250 times higher than the number
of necessary BDD nodes. Additionally, more bits are needed for the
encoding of a state than for the encoding of a BDD node.

4.4 Pure BDDA*

A variant of BDDA*, called Pure BDDA*, can be obtained by or-
dering the priority queue only according to the h values. In this case
the calculation of the successor relation simplifies to 9x0 (Min(x0) ^
T (x0; x) ^H(f; x)) as shown in Figure 8.

procedurePure BDDA*
Open H(f; x) ^ �S0
do
fmin = minff j f ^ Open 6= ;g
Min(x) 9f Open ^ f = fmin
Rest(f; x) Open ^ : Min
Succ 9x0 (Min(x0) ^ T (x0; x) ^H(f; x))

Open Rest _ Succ
while (Open ^ �G � 0)

Figure 8. Pure BDDA* algorithm implemented with BDDs.

The old f -value will be overwritten and need not to be provided.
Therefore, Pure BDDA* is a greedy hill climber.

Unfortunately, even for an optimistic heuristic the algorithm is not
admissible and, therefore, will not necessarily find an optimal solu-
tion. The hope is that in huge problem spaces the estimate is good
enough to lead the solver into a promising goal direction. Therefore,
especially heuristics with overestimizations can support this aim.

On solution paths the heuristic values eventually decrease. Hence,
in Pure BDDA* we take advantage of the fact that the most promis-
ing states are in the front of the priority queue, have a smaller BDD
representation, and are explored first. This compares to BDDA* in
which the combined merit on the solution paths eventually increases.
The advantage of symbolic representation compared to single state
exploration is that several paths are searched in parallel.

Note the similarity of considering a possibly large set of state in
enforced hill climbing as implemented in FF. A good trade-off be-
tween exploitation and exploration has to be found. In FF breadth-
first search for the next heuristic estimate consolidates pure heuristic
search for a complete search strategy.

Figure 9 depicts the different dequeued BDDs Min together with
their heuristic valuation in the exploration phase of Pure BDDA* for
the example problem.

5 Experiments

From given results on the different heuristic search planners [28] it
can be obtained that heuristics pay off best in the Gripper and the
Logistics domain. We add some data obtained in two model checking
planning problems.

1 1 1 1

truck in SF

package

in truckin SF

package

2

h-value h-value

1 1

h-value h-value

in truck

truck in LA

package package

truck in LA

in LA
x1

x0

h1

h0 h0 h0 h0

h1h1h1

x0

x1

x2 x2

x1 x1

x2

x0x0

0

Figure 9. Backward exploration of the example problem in Pure BDDA*.
In each iteration step the BDD Min with associated h-value is shown. Note

that when using forward set simplification these BDDs additionally
correspond to a snapshot of the priority queue Open.

More experimental results on AIPS-1998 results are provided
in [20]. The performance on AIPS-2000 can be obtained at the of-
ficial homepage of the competition.

5.1 Gripper

The effect of forward set simplification and optimization can best be
studied in the scalable Gripper domain depicted in Table 12.
B abbreviates bidirectional search, O BDD image optimization,

and F forward set simplification, respectively. When the problem in-
stances get larger the additional computations pay off. In Gripper
bidirectional search leads to no advantage since due to the symmetry
of the problem the climax of the BDD sizes is achieved in the mid-
dle of the exploration. This is an important advantage to BDD-based
exploration: Although the number of states grows continuously, the
BDD representation might settle and become smaller. The data fur-
ther suggests that optimizing the BDD structure with the proposed
optimization is helpful only in large problems.

Solution Length BFS +B +BF +BFO

1-1 11 0.00 0.01 0.01 0.01
1-2 17 0.01 0.01 0.02 0.02
1-3 23 0.02 0.03 0.02 0.02
1-4 29 0.03 0.03 0.04 0.04
1-5 35 0.04 0.04 0.07 0.07
1-6 41 0.06 0.06 0.08 0.08
1-7 47 0.08 0.08 0.11 0.14
1-8 53 0.12 0.13 0.19 0.20
1-9 59 0.35 0.36 1.33 1.58

1-10 65 0.72 1.93 2.06 2.15
1-11 71 1.27 2.33 2.36 2.43
1-12 77 1.95 3.21 3.05 3.13
1-13 83 2.80 3.91 3.48 3.49
1-14 89 3.80 5.04 4.28 4.36
1-15 95 4.93 6.26 5.29 5.43
1-16 101 6.32 7.21 6.41 6.07
1-17 107 7.72 8.94 7.26 7.52
1-18 113 9.82 10.91 8.65 8.61
1-19 119 24.73 26.11 15.28 15.35
1-20 125 34.59 36.73 20.41 20.08

Table 1. Searching the Gripper domain with breadth-first search, combined
with bidirectional search, forward set simplification and optimization.

2 The CPU-times in the experiments are given in seconds on a Linux-PC
(Pentium III/450 MHz/128 MByte).



As we can see, Gripper is not a problem to BDD-based search at
all, whereas it is hard for Graphplan search engines.

5.2 Logistics

Due to the first round results in AIPS-2000 it can be deduced that
FF's, STAN's and MIPS's heuristic single search engine are state-of-
the-art in this domain, but Logistics problems turn out to be supris-
ingly hard for BDD exploration and therefore a good benchmark do-
main for BDD inventions. For example Jensen's BDD-based plan-
ning system, called UMOP, fails to solve any of the AIPS-1998 (first-
round) problems [30] and breadth-first search in MIPS yields only
two domains to be solved optimally.

This is due to high parallelism in the plans, since optimal paral-
lel (Graphplan-based) planners, like IPP (by Köhler), Blackbox (by
Kautz and Selman), Graphplan (by Blum and Furst), Stan (by Fox
and Long) perform well on Logistics. Note, that heuristic search
planners, such as (parallel) HSP2 with an IDA* like search engine
loose their perfomance gains when optimality has to be preserved.

With Pure BDDA* and the FF-Heuristic, however, we can solve
11 of the 30 problem instances [20]. The dauting problem is that –
due to the large minimized encoding size of the problems – the transi-
tion function becomes too large to be build. Therefore, the Logistics
benchmark suite in the Blackbox distribution and in AIPS-2000 scale
better. In AIPS-2000 we can solve the entire first set of problems
with heuristic sybolic search and Table 2 visulizes the effect of Pure
BDDA* for the Logistics suite of the Blackbox distribution, in which
all 30 problems have encodings of less than 100 bits. We measured
the time, and the length of the found solution. HHSP

add and HHSP

max

abbreviate Pure BDDA* search according to the add and the max
relation in the HSP-heuristic, respectively. HFF

add and HFF

max are de-
fined analogously. The depicted times are not containing the efforts
for determining the heuristic functions, which takes about a few sec-
onds for each problem. Obviously, searching with the max-Heuristic
achieves a better solution quality, but on the other hand it takes by far
more time. The data indicates that on average the FF-Heuristic leads
to shorter solutions and to smaller execution times. This was ex-
pected, since the average heuristic value per fluent in HFF is larger
than in HHSP , e.g. in the first problem it increases from 2.96 to 4.43
and on the whole set we measured an average increase of 41.25 % of
the heuristic estimate.

The backward search component - here applied in the regression
space (thus corresponding to forward search in progression space) is
used as a breadth-first target enlargement. With higher search tree
depths this approach definitely profits from the symbolic representa-
tion of states.

In Pure BDDA* forward simplification is used to avoid recur-
rences in the set of expanded states. However, if the set of reachable
states from the first bucket in the priority queue returns with failure,
we are not done, since the set of goal states according to the minimal
heuristic value may not be reachable.

5.3 Model Checking Domains

The model checking problem determines whether a formula is true
in a concrete model and is based on the following issues (cf. F.
Giunchiglia and P. Taverso [25]):

1. A domain of interest (e.g, a computer program or a reactive sys-
tem) is described by a formal model.

BFS H
HSP
add H

HSP
max H

FF
add H

FF
max

1 25 0.66 30 0.06 25 1.05 30 0.92 25 0.49
2 24 121 27 5.33 24 129 31 1.27 26 3.52
3 - - 29 3.30 26 35.98 28 1.18 26 30.22
4 - - 59 6.53 52 37.10 59 3.49 52 22.74
5 - - 52 5.64 42 4.56 51 3.11 43 3.41
6 42 72 63 7.22 51 67.18 64 2.45 52 11.37
7 - - 83 14.89 - - 80 11.87 - -
8 - - 84 19.14 - - 80 15.05 - -
9 - - 84 13.07 - - 80 8.94 - -

10 - - 47 13.93 40 484 45 8.15 40 421
11 - - 54 10.10 - - 52 7.30 - -
12 - - 37 1.19 - - 36 3.90 - -
13 - - 77 15.18 - - 78 9.89 - -
14 - - 74 18.58 - - 83 13.36 - -
15 - - 64 17.16 - - 68 10.08 - -
16 39 580 49 7.19 41 4.64 46 2.78 40 1.73
17 43 277 51 9.97 43 3.91 50 2.60 43 3.38
18 - - 56 21.53 - - 54 15.76 - -
19 - - 53 12.85 - - 57 8.01 - -
20 - - 101 20.42 - - 95 13.58 - -
21 - - 73 16.16 - - 69 10.47 - -
22 - - 94 18.45 - - 87 14.54 - -
23 - - 72 13.95 - - 71 10.81 - -
24 - - 79 14.18 - - 75 9.50 - -
25 - - 73 14.81 - - 66 9.03 - -
26 - - 60 14.23 - - 61 9.35 - -
27 - - 81 15.31 - - 80 12.72 - -
28 - - 87 27.15 - - 89 23.74 - -
29 - - 51 21.58 - - 52 16.70 - -
30 - - 59 13.41 - - 59 9.61 - -

Table 2. Searching the Logistics domain with Pure BDDA*.

2. A desired property of finite domain (e.g. a specification of a pro-
gram, a safety requirement for a reactive system) is described by
a formula typically using temporal logic.

3. The fact that a domain satisfies a desired property (e.g. the fact that
a program meets its specification, e. g. that a reactive system never
ends up in a dangerous state) is determined by checking whether
or not the formula is true in the initial state of the model.

The crucial observation is that exploring (deterministic or non-
deterministic) planning problem spaces is in fact a model checking
problem. In model checking the assumed structure is described as a
Kripke structure (W;W0; T; L), where W is the set of states, W0 the
set of initial states, T the transition relation and L a labeling func-
tion that assigns to each state the set of atomic propositions which
evaluate to true in this state.

The properties are usually stated in a temporal formalism like lin-
ear time logic LTL (used in SPIN) or branching time logic CTL even-
tually enhanced with fairness constraints (used in PVS and SMV).
In practice, however, the characteristics people mainly try to verify
are simple safety properties expressible in all of the logics mentioned
above. They can be checked through a simple calculation of all reach-
able states. An iterative calculation of Boolean expressions has to be
performed to verify the formula EF Goal in the temporal logic CTL
which is dual to the verification of AG :Goal. The computation of a
(minimal) witness delivers a solution. Cimatti, Roveri and Traverso
present BDD-based planning approaches capable of dealing with
non-deterministic domains [12, 23]. Due to the non-determinism the
authors refer to plans as complete state action tables. Therefore, ac-
tions are included in the transition relation, resulting in a representa-
tion of the form T (�; x0; x). The concept of strong cyclic plans turns
out to check the formula AGEF Goal [16] which expresses that from
each state on a path a goal state is eventually reachable.

When using BDDA* for model checking safety properties it
turned out that it is not a good choice to omit the set Closed. In dif-
ference to A*, however, the length of the minimal path to each state
is not stored. The closest corresponding single-state space algorithm



is IDA* with transposition tables [45]. Unfortunately, even for opti-
mistic heuristics it is necessary to memorize the corresponding path
length to guarantee admissibility. However, one can omit this addi-
tional information when only consistent heuristics are considered.
In this case the resulting cost-function is monotone. Fortunately, we
found a refinement strategy to devise consistent heuristics for hard-
ware verification [44].

In our experiments we used the �-calculus [38] model checker
�cke [1] which accepts full �-calculus as its input language3. The
while-loop of BDDA* can be converted into a least fixpoint. As it is
not possible to change the two sets (Open, Closed) in the body of one
fixpoint the Closed set is simulated by one slot in the BDD for Open.
Another difficulty is that the function for Open is not monotone be-
cause states are deleted after they have been expanded. Monotonic-
ity is a sufficient criterion to guarantee the existence of fixpoints.
Therefore, the function for Open is not a syntactic correct �-calculus
formula but as the termination of the algorithm is guaranteed by the
monotonicity of the Closed set the standard algorithm for the calcu-
lation of �-calculus fixpoints can be applied nevertheless. Unfortu-
nately, we cannot take advantage of a special BDD operation to de-
termine the minimal costs in this case. These calculations have to be
simulated by standard operations leading to some unnecessary over-
head that in the visible future has to be avoided in a more customized
implementation.

For the evaluation of our approach we use the example of the tree-
arbiter a mechanism for distributed mutual exclusion: 2n users want
to use a resource which is available only once and the tree-arbiter
manages the requests and acknowledges avoiding a simultaneous ac-
cess of two different users. The tree-arbiter consists of 2n� 1 mod-
ules of the same structure such that it is easy to scale the example.
Since we focus on error detection we experiment with an earlier in-
correct version published in [18] using an interleaving model.

BFS BDDA*
n it max nodes time it max nodes time
15 30 991374 46s 127 5715484 288s
17 42 18937458 3912s 157 7954251 476s
19 44 22461024 6047s 157 8789341 540s
21 44 26843514 24626s (9) 157 9097823 530s
23 >40 - >17000s 157 9548269 516s
25 - - - 169 21561058 1370s
27 - - - 169 25165795 1818s (1)

Table 3. Tree-arbiter: In parenthesis the number of garbage collections is
given.

As the algorithm for the automatic construction of the heuristic has
not yet been implemented and since the number of different error-
cases increases very fast with the size of the tree-arbiter we searched
for the detection of a special error. Table 3 shows the results in com-
parison with a classical forward breadth first search. To guarantee the
fairness of the comparison the search is terminated at the time when
the first error state has been encountered. The depth, which can be
chosen by the user, denotes the quality and complexity of the auto-
matically constructed heuristic depending on the transition relation
and the error specification.

For the tree-arbiter with 15 modules or less the traditional ap-
proach is faster and less memory consuming, but for larger sys-
tems its time and memory efficiency decreases very fast. On the
other hand, the heuristic approach found errors even in large sys-

3 All data in this section has been produced on a Unix-Workstation (Sun Ultra
1/512 MByte).

tems, since its memory and time requirements increase more slowly.
For the tree-arbiter with 23 modules the error could not be found
with breadth-first-search. Already for the version with 21 modules 9
garbage collections were necessary not to exceed the memory limita-
tions, whereas the first garbage collection with the heuristic method
had to be invoked at a system of 27 modules. For the tree-arbiter
with 27 modules we also experimented with the heuristic. When we
double its values the heuristic fails to be optimistic, but the error de-
tection could be carried through avoiding any garbage collections.
Moreover, although more than three times more iterations were nec-
essary only about 8% more time was consumed which indicates that
it can be efficient to perform many iterations treating small sets of
states instead of few iterations treating large sets. This also illus-
trates that there is much room for further research in refinements to
the heuristic.

BFS BDDA*
size max nodes time depth it max nodes time

6 23 26843514 5864s (5) 6v 35 29036025 2207s (4)
6 53 25165795 1009s (1)
7 53 25159862 813s (0)

Table 4. Asynchronous DME: In parenthesis the number of garbage
collections is given.

The second example used for the evaluation of our approach is the
asynchronous DME. Like the tree-arbiter it consists of n identical
modules and it is also a mechanism for distributed mutual exclusion.
The modules are arranged in a ring structure whereas the modules
of the tree-arbiter form a pyramid. In this case we also experimented
with the set Closed and it turns out that it was more efficient to use
the original BDDA*-algorithm. For this variation only small changes
in the calculation of Open are necessary. Like in the previous exam-
ple the results in Table 4 show that the heuristic approach is more
memory efficient and less time-consuming. The first experiment in
the table uses the set Closed that was omitted in the other experi-
ments since this turned out to be more time and memory efficient.

6 Conclusion and Outlook

Symbolic breadth first search and BDDA* have been applied to
the areas search [21] and model checking [44]. The experiments in
(heuristic) search indicate the potential power of the symbolic ex-
ploration technique (in Sokoban) and the lower bound information
(in the Fifteen Puzzle). In model checking we encounter a real-world
problem of finding errors in hardware devices. BDD sizes of 25 mil-
lion nodes reveal that even with symbolic representations we operate
at the limit of main memory. However, the presented study of domain
independent STRIPS-planning proves the generality of BDDA*.

The presented directed BDD-based search techniques bridge the
gap between heuristic search planners and symbolic methods. Es-
pecially the newly contributed Pure BDDA* algorithm and the FF
heuristic seem very promising to be studied in more detail and to be
evaluated in other application areas. All applied heuristics are not as
informative as their original, but, nevertheless, lead to good results.
Together with the wide range of applicability through the generality
of the presented approach, we conclude that on the same heuristic
information a symbolic planner is competitive with a single state one
if at least moderate-sized sets of states have to be explored.

Finally there is lot of work to be done in future. For example,
some BDD refinements (such as transititon function splitting) should
be implemented. Further on, we have to develop a BDD exploration



algorithm that yields optimal parallel plans. Kautz and Selman have
shown, how this can be achieved in case of SATPLAN and Haslum
and Geffner have presented a first solution to the problem for HSP.
The most intense research will focus on generalization to the plan-
ning language (such as non-determinism), where the advantage of
BDD-based planning compared to single-state exploration is more
apparent. For example BDD generalisations to Markov decision pro-
cess planning for the (single-state) general planning tool GPT by
Geffner and Bonet are desireable [5].

When introducing ressources, hybrid approaches with integer pro-
gramming become an apparent issue. Three different approaches can
be found. Walser and Kautz integrate the concept of numbers within
the propositional setting and therefore extend the languages [34].
However, the new formalism can handle plans with ressources, ac-
tion costs and complex objective functions. Vossen et. al present a
domain independent translation of planning problems into integer
programs [46]. As a drawback the efficiency of other system has not
been gained. Bockmayr and Dimopoulos integrate some domain spe-
cific knowledge to the setting of propositional planning [3].

Acknowledgment I thank F. Reffel and M. Helmert for their co-
operation concerning this research. The work is supported by DFG
in a project entitled Heuristic Search and Its Application in Protocol
Verification.

REFERENCES

[1] Armin Biere, `�cke - efficient �-calculus model checking', in Com-
puter Aided Verification, pp. 468–471, (1997).

[2] A. Blum and M. L. Furst, `Fast planning through planning graph anal-
ysis', in IJCAI, pp. 1636–1642, (1995).

[3] A. Bockmayr and Y. Dimopoulos, `Integer programs and valid inequal-
ities for planning problems', pp. 241–253.

[4] B. Bonet and H. Geffner, `Planning as heuristic search: New results', in
ECP, pp. 359–371, (1999).

[5] B. Bonet and H. Geffner, `Planning with incomplete information as
heuristic search in belief space', in AIPS, pp. 52–61, (2000).

[6] B. Bonet, G. Loerincs, and H. Geffner, `A robust and fast action selec-
tion mechanism for planning', in AAAI, pp. 714–719, (1997).

[7] R. E. Bryant, `Symbolic manipulation of boolean functions using a
graphical representation', in DAC, pp. 688–694, (1985).

[8] R. E. Bryant, `Graph-based algorithms for boolean function manipula-
tion', IEEE Transaction on Computers, 35, 677–691, (1986).

[9] J. R. Burch, E. M.Clarke, K. L. McMillian, and J. Hwang, `Symbolic
model checking: 1020 states and beyond', Information and Computa-
tion, 98(2), 142–170, (1992).

[10] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso, `Planning
via model checking: A decision procedure for AR', in ECP, (1997).

[11] A. Cimatti and M. Roveri, `Conformant planning via model checking',
in ECP, pp. 21–33, (1999).

[12] A. Cimatti, M. Roveri, and P. Traverso, `Automatic OBDD-based gen-
eration of universal plans in non-deterministic domains', in AAAI, pp.
875–881, (1998).

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, The MIT Press, 1990.

[14] O. Coudert, C. Berthet, and J.C. Madre, `Verification of synchronous
sequential machines using symbolic execution', in Automatic Verifica-
tion Methods for Finite State Machines, pp. 365–373, (1989).

[15] J. C. Culberson and J. Schaeffer, `Searching with pattern databases', in
CSCSI, pp. 402–416, (1996).

[16] M. Daniele, P. Traverso, and M. Y. Vardi, `Strong cyclic planning revis-
ited', in ECP, pp. 34–46, (1999).

[17] E. W. Dijkstra, `A note on two problems in connection with graphs.',
Numerische Mathematik, 1, 269–271, (1959).

[18] D.L. Dill, Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits, An ACM Distinguished Dissertation, The
MIT Press, 1988.

[19] S. Edelkamp and M. Helmert, `Exhibiting knowledge in planning prob-
lems to minimize state encoding length', in ECP, pp. 135–147, (1999).

[20] S. Edelkamp and M. Helmert, `On the implementation of Mips', in
AIPS-Workshop on Model-Theoretic Approaches to Planning, pp. 18–
25, (2000).

[21] S. Edelkamp and F. Reffel, `OBDDs in heuristic search', in KI, pp. 81–
92, (1998).

[22] S. Edelkamp and F. Reffel, `Deterministic state space planning with
BDDs', in ECP, pp. 381–382, (1999).

[23] P. Ferraris and E. Guinchiglia, `Planning as satisfiability in simple
nondeterministc domains', in AIPS-Workshop on Model-Theoretic Ap-
proaches to Planning, pp. 10–17, (2000).

[24] M. P. Fourman, `Propositional planning', in AIPS-Workshop on Model-
Theoretic Approaches to Planning, pp. 10–17, (2000).

[25] F. Giunchiglia and P. Traverso, `Planning as model checking', in ECP,
pp. 1–19, (1999).

[26] P. E. Hart, N. J. Nilsson, and B. Raphael, `A formal basis for heuristic
determination of minimum path cost', IEEE Transaction on SSC, 4,
100, (1968).

[27] P. Haslum and H. Geffner, `Admissible heuristics for optimal planning',
in AIPS, pp. 140–149, (2000).

[28] J. Hoffmann, `A heuristic for domain independent planning and its use
in an enforced hill climbing algorithm', Technical report, Computer
Science Department, Freiburg, (2000). http://www.informatik.uni-
freiburg.de/tr/133.

[29] S. Holldobler and H.-P. Stör, `Solving the entailment problem in the
fluent calculus using binary decision diagrams', in AIPS-Workshop on
Model-Theoretic Approaches to Planning, pp. 32–39, (2000).

[30] R. M. Jensen and M..M. Veloso, `OBDD-based deterministic planning
using the UMOP planning framework', in AIPS-Workshop on Model-
Theoretic Approaches to Planning, pp. 26–31, (2000).

[31] A. Junghanns, Pushing the Limits: New Developments in Single-Agent
Search, Ph.D. dissertation, University of Alberta, 1999.

[32] H. Kautz and B. Selman, `Pushing the envelope: Planning propositional
logic, and stochastic search', in AAAI, pp. 1194–1201, (1996).

[33] H. Kautz and B. Selman, `Unifying SAT-based and Graph-based plan-
ning', in IJCAI, pp. 318–325, (1999).

[34] H. Kautz and J. Walser, `State-space planning by integer optimization',
in AAAI, (1999).

[35] J. Koehler and J. Hoffmann, `On reasonable and forced goal orderings
and their use in an agenda-driven planning algorithm', JAIR, 13(1),
(2000). To appear.

[36] R. E. Korf, `Finding optimal solutions to Rubik's cube using pattern
databases', in AAAI, pp. 700–705, (1997).

[37] R. E. Korf and L. A. Taylor, `Finding optimal solutions to the twenty-
four puzzle', in AAAI, pp. 1202–1207, (1996).

[38] D. Kozen, `Results on the propositional �-calculus', Theoretical Com-
puter Science, 27, 333–354, (1983).

[39] D. Long and M. Fox, `Automatic synthesis and use of generic types in
planning', in AIPS, pp. 196–205, (2000).

[40] D. McDermott, `A heuristic estimator for means-ends analysis in plan-
ning', in AIPS, pp. 142–149, (1996).

[41] X. L. Nguyen and S. Kambhampati, `Extracting effective and admissi-
ble state space heuristics from the planning graph'. To appear.

[42] J. Pearl, Heuristics, Addison-Wesley, 1985.
[43] I. Refanidis and I. Vlahavas, `A domain independent heuristic for

STRIPS worlds based on greedy regression tables', in ECP, pp. 346–
358, (1999).

[44] F. Reffel and S. Edelkamp, `Error detection with directed symbolic
model checking', in FM, pp. 195–211, (1999).

[45] A. Reinefeld and T. A. Marsland, `Enhanced iterative-deepening
search', IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 16(7), 701–710, (1994).

[46] T. Vossen, M. Ball, A. Lotem, and D. Nau, `On the use of integer pro-
gramming models in AI planning', in IJCAI, (1999).


