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Abstract.  Solving scheduling problems with Constraint
Satisfaction Problems (CSP’s) techniques implies a wide space
search with a large number of variables, each one of them with a
wide interpretation domain. This paper discusses the application
of CSP heuristic techniques (based on the concept of slack of
activities) for variable and value ordering on a special type of
job-shop scheduling problems in which the operations must
schedule inside of temporal windows. These techniques are
improved by introducing the concepts of slack probability and
the find-hole method. Thus, a more flexible heuristic technique is
obtained, which improves empirical efficiency and allows early
detection of unfeasible problems.

1    INTRODUCTION

Scheduling is the problem of allocating limited resources to
operations (activities) over time. Scheduling is a complex task
that can be formulated using a constraint-based representation.
Reasons for scheduling complexity include [4]:
• Scheduling is a feasibility problem. The final solution must

accomplish all the problem constraints. Another objective to be
satisfied is the optimization of an evaluation function, adjusting
to certain criteria as cost, lateness, process time, inventory
time, etc.

• Some scheduling problems have many constraints due to the
unavailability of resources, due dates, etc.

• Constraint representation cannot express the importance of
the value domains. The number and identity of tasks that
require a resource over a particular time interval is a key piece
of information that can suppose the basis for heuristic variable
and value orderings.

Scheduling constraints are usually disjunctive ones (i.e.: two
tasks cannot use the same resource at the same time). The
consistence problem of metric disjunctive constraints is NP-hard
[3], such that CSP techniques are used. However, inequality
constraints generate a large search space that may have few (or
no) feasible solutions.  Thus, it becomes necessary to define
techniques to empirically decrease this complexity and be able to
solve real problems more efficiently (constraining value do-
mains, relaxing some constraints, etc). We are interested in the

relaxation of the heuristic variable and value orderings to obtain
a more flexible method, which makes a better use of the knowl-
edge the scheduler may have about each particular problem. Our
work is focused on job-shop scheduling problems. In these
problems, operations must be scheduled within their feasible time
windows (i.e.: between its respective earliest start time and latest
finish time). We propose heuristic techniques for variable and
value orderings to be included in two known searching
algorithms: Basic-Depth-First Backtrack and Depth-First-with-
DCE [9, 10]. The former algorithm is the classical chronological
backtracking procedure heuristically improved. The latter uses
the additional heuristic Dynamic Consistency Enforcement
(DCE), which dynamically focuses its effort on critical resource
subproblems and learns from its previous faults.

We summarize the main concepts about the job-shop
scheduling problem and the CSP approach in Section 2. In
Section 3, we introduce the search method used and new
heuristic concepts in this process. The proposed heuristics are
empirically evaluated on a set of typical problems in Section 4.
Conclusions and final remarks are discussed in Section 5.

2    THE JOB-SHOP SCHEDULING PROBLEM

A job-shop scheduling problem is represented by a set of jobs
J={J1,...,Jn} and a set of resources R={R1,...,Rm}. Each job Ji

consists of a set of operations Oi={Oi
1,...,O

i
n} which must be

performed between a ready-time (rti) and a due-time (dti). The
execution of each operation (Oi

k) requires the use of a set of
resources (Ri

k ⊆ R) during a time interval (dui
k). The start time

sti
k of operation Oi

k indicates when the operation may begin to
use the resources Ri

k.
The problem of job-shop scheduling can be considered as a

Constraint Satisfaction Problem [1], with the following elements:

• A set of variables {x1,...,xn} associated with the start time of
operations. These variables take values in finite domains
{D1,...,Dn} that may be constrained by unary constraints over
each variable. In these problems, time is usually assumed
discrete, with a problem-dependent granularity.

• A set of constraints {c1,...,cm} among variables which are
predicates ck(xi,...,xj) defined on the Cartesian product
Di×...×Dj and restrict the variable domains.
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Constraints of job-shop scheduling problems can be
represented as binary, disjunctive, metric and point-based
constraints [3]:

]}ndn[d]2d2][d1d1{[d)kx,jx(ic +−+−+−≡ L  where +− ≤ ii dd .

This constraint disjunctively restricts the temporal distance
between xj and xk:

+−+− ≤−≤∨∨≤−≤ njkn1jk1 dxxddxxd L

Moreover, unary constraints on a variable xj may be
represented as binary constraints between the variable and a
special time-point 0T , which represents 'the beginning of the
world' (usually, 00 =T ):

]}d[d]d][dd{[d0Tx nn2211j
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Thus, we have a Temporal Constraint Problem or TCP [3]. An
assignment of the variables (xi,...,xj)  in their domains is
consistent with respect to ck iff ck is satisfied. A solution of a
CSP is an assignment of a value to each variable within its
respective value domain satisfying all constraints.

2.1    Constraints and CSP Algorithms

Two main constraints appear in this kind of job-shop problems:

• Precedence constraints: the operations Oj
i of each job Ji must

be scheduled according to precedence constraints, i.e., there
exists a partial ordering among the operations of each job and
may be represented (Figure 1) by a precedence graph or tree-
like structure [10]. Each precedence constraint Oi

k BEFORE
Oi

l gives rise to the linear inequality sti
k + dui

k < sti
l.

• Capacity constraints: resources cannot be used
simultaneously by more than one operation. Thus, two
different operations Oi

k and Oj
l cannot overlap unless they use

different resources. Capacity constraints give rise to
disjunctive linear inequalities:

∀ Oi
k, O

j
l:

Ri
k ∩ Rj

l = ∅ ∨ ([Oi
k before Oj

l] ∨ [Oj
l before Oi

k]

Additionally, other technological constraints may restrict the
set of possible execution times for individual operations or
availability times for resources, etc.

There are two main objectives in a job-shop CSP:

• Feasibility: if a solution can be found. We can later be
interested in optimal solutions, according to several
scheduling optimality criteria or cost functions to evaluate the
optimality of each feasible solution.

• Efficiency of the CSP process. This objective implies
minimizing backtracking processes and, consequently, the
conflicts. When an operation requires a resource that is
already being used, a conflict appears. We can anticipate

possible conflicts and improve the algorithm efficiency by
detecting resources with the highest contention.
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Figure 1.    Example of tree-like (from [10])

The solving algorithm should be able to generate and evaluate
all the possible assignments for each one of the problem
variables. However, only a small fraction of these possible
assignments will participate in a feasible solution. Thus, an
efficient search, by means of an incremental method, should
establish an appropriate order for instantiating the variables and
obtain the order to select the values from the domains. This
incremental method can be applied with two main techniques:
retrospective and prospective techniques [1].

• Retrospective techniques that assign a value to a variable
checking other variables with assigned values in order to
avoid conflicts. If all constraints hold, another variable and
value are selected. Otherwise, some constraint is not satisfied
and backtracking occurs. The simplest retrospective
technique is chronological backtracking. If the verification of
consistency fails, it will select the variable most recently
instantiated and it will test another value of its domain. When
all values in the variable domain have been unsuccessfully
tested, the backtracking goes back to the next most recently
instantiated variable, and so on. If the procedure goes back to
the initial state (i.e., the state with an empty schedule), the
problem is unfeasible. Chronological backtracking may
behave in an inefficient way, which is known as thrashing
[6]. Thrashing may appear when the backtracking tries to
recover from a dead-end state (a partial solution which
cannot be completed). Since it tries to schedule the last
scheduled operation, it may go back to similar dead-end
states. However, the operation most recently scheduled is not
usually the cause of the conflict. The search may fail due to
some variable assignment previously performed in the search.

• Prospective techniques that propagate the effects of each
variable instantiation to unassigned variables. This
propagation is based on three levels of local consistency2

which arise from the analysis of reasons for thrashing [1]:
i) Lack of node consistency. No elements in the variable

domain satisfy unary constraints. Assigning these values
causes immediate failures.

                                                
2 Local levels of k-consistency are empirically more efficient in
backtracking processes than total-consistency [6].



ii) Lack of arc consistency which applies the previous
concept to binary constraints.

iii) Lack of path consistency. For each value xi∈Di and
xk∈Dk such that (xi=vi cik xk=vk) holds, a sequence of
values does not exist

xi+1∈ Di+1, xi+2 ∈ Di+2,...,xk-1∈ Dk-1, such as
(xi ci i+1 xi+1), (xi+1 ci+1 i+2 xi+2),..., and (xk-1 ck-1 k xk) hold.

2.2    Variable and Value Orderings

The order in which variables and domain values are selected in a
CSP process is important to decrease the empirical
computational time. An optimal variable/value ordering would
produce a linear time solution for a feasible scheduling problem
because no backtracking would be necessary. Thus, an aim is to
minimize backtracking stages and, consequently, the conflicts.
These conflicts appear when an operation requires a resource

that is already being used. Therefore, it is necessary to use good
ordering heuristics to efficiently solve practical problems and
reduce the effective size of the search space [6]. In particular,
texture measurements [8] can be used as a basis for heuristic
decisions. A texture measure is an assessment of properties of a
constraint graph and reflects the intrinsic structure of a particular
problem. On the other hand, by detecting resources that have the
highest contention, we can anticipate possible conflicts and
improve algorithm efficiency [2, 10]. The most common
heuristic is to instantiate the most constrained variable to its
least constraining value. Intuitively, the earlier the most
constrained variable is instantiated, the earlier the backtracking
will take place (pruning the search space and minimizing
thrashing). Furthermore, the probability of finding a solution
without backtracking in this variable is increased by assigning
the least constrained value.
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Figure 2.    Heuristic Searching Method:  Static part and Dynamic part

3    HEURISTIC SEARCH METHOD

We use the classic backtracking procedure, which is improved
with specific heuristic criteria for variable ordering to avoid
thrashing and to improve the efficiency of the process. Our work
is based on the heuristic techniques developed by Sadeh [10].
However, we do not consider all the criteria because they vastly
limit the search space. Moreover, the flexibility of the method is
based on some additional considerations that allow us to extend
the search space.

In order to study the calendar of utilization of each resource,
we use the Individual Demand and Aggregate Demand
techniques. These techniques and the concept of slack
probability of an operation allow us to make better use of the
temporal windows of the operations for scheduling. These
techniques select the most critical operation and assign it its less-

constrained value. We have mixed retrospective and prospective
techniques in the verification of the consistency. Furthermore,
we introduce the find-hole method that allows us to eliminate
any doubt in the presence of a conflicting situation either: (i)
according to operations not yet scheduled (prospective); or (ii)
according to the maintenance of the consistency among the new
operation and the operations already scheduled (retrospective).

3.1    Searching Process

Chronological backtracking is based on the incremental search
of a solution. This incremental search can be represented as a
transition between states. It starts in an initial state without any
scheduled action. It finishes in a final state when a solution is
found (all the actions have been scheduled) or when there is no
feasible solution. Our algorithm uses some heuristics to improve
the efficiency of the classical backtracking techniques. Figure 2
shows a schematic representation of the heuristic method used in



the search of a solution. The method has two parts: one static
part (search anticipation), and another dynamic part, which is
based on the techniques that are applied during the search
process. The majority of the decisions are taken during the
search process: consistency enforcing, which value to select,
schedule, or unschedule, etc. However, all these decisions are
conditioned by the decision adopted in the static part: the order
of selecting the variables.

We can observe a possible sequence of decisions in the
scheduling of an operation in Figure 2:
1. An operation is selected to be scheduled in (1).
2. Capacity constraints are verified according to the operations

not yet scheduled and no conflict is detected (2, 3).
3. We look for a possible time for the start of the operation (4)

guaranteeing the precedence and capacity constraints
according to the operations that have already been scheduled
(5, 6).

4. There is no conflict and the operation is scheduled (7).

On the other hand, if a conflicting situation is detected in step
3, a backtracking stage (8) will occur in step 4 and the procedure
will go back to the most recently scheduled operation testing a
new value of its domain.

3.2    Slack Probability of an Operation

The slack of an operation Ol
i is defined in Operational Research

as the difference between the latest (lstl
i) and earliest (estl

i) start
time:

S(Ol
i)=lstl

i - estl
i

This value indicates the number of units of time the
operation’s execution can be delayed, without delaying the
project. In our context, we have a similar underlying idea: we are
interested in finding which is the operation that admits more
starting times, taking into account the precedence constraints.
We define the slack probability (SP) of an operation as the
probability of movement in the temporal window [estl

i,...,lft
l
i],

where estl
i is the earliest Ol

i start time and lftl
i is the latest Ol

i

finish time. Thus, the slack probability is defined as:

( ) ( )1estlft

du
1OSP

l
i

l
i

l
il

i
+−

−=

If the operation has only one possible start time, the slack
probability will be null. Otherwise, if the operation has a wide
domain of possible start times, its slack probability will be the
unit. Hence, an operation is more conflictive than another if its
slack probability is minor.

A simple problem is shown in Figure 3. In this figure, there
exist operations which share a same resource R. In addition,
operation slacks are represented for each operation. If the
criterion for selecting the next operation is the slack probability,
the next operation to be scheduled will be the operation O4

2

because its value SP(O4
2) is the least.

SP(O1
2) = 0.71

time
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Figure 3.    Representation of the slack probability for operations that
share a resource R (boxes are labeled by the name of the operation and
its duration)

3.3    Consistency Enforcing: the Heuristic Find-
Hole Method

Once an operation has been selected to schedule, it is necessary
to check that all the involved constraints are satisfied:

• Consistency according to the precedence constraints. The
precedence constraints are defined among operations of a
same job: the process must guarantee  that two operations of
a same job are not executed in the same instant of time.
Essentially, the earliest start time is propagated downstream
within the job whereas latest start time is propagated
upstream. This propagation is applied before the CSP search
process.

• Consistency according to constraints about resource
capacities. Checking the consistency of capacity constraints
is a difficult process due to the next constraints:

• Forward consistency checking. When an operation is
scheduled and a resource is allocated to the operation, a
forward checking process analyzes the set of remaining
possible reservations of other operations that requires the
same resource and removes those conflicting
reservations.

• Additional consistency checking. The process must check
if two unscheduled operations that require the same
resource are not overlapped. Two operations overlap
when both require the same resource at the same time for
every start time.

• Find-hole. This method checks if an apparent conflicting
situation is actually conflicting. Before indicating an
operation has not any possible execution, it is necessary
to check the resource usage calendar of this operation. If
the shared resource is not used during the entire
operation’s execution, it can be used in another



operation. The find-hole method identifies the two
extreme time points of the temporal line in which the
action is executed (t- and t+, respectively) and searches
some hole in which the resource is available and can be
used by another operation. If a hole does not exist, an
inconsistency will be detected because the resource is not
available.
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4    EMPIRICAL EVALUATION

In this section, we study the empirical evaluation of the
developed heuristic method. The empirical method performance
is compared with the algorithms Basic-Depth-First and Depth-
First-with-DCE. Both algorithms use the same variable/value
ordering heuristics and the same techniques of consistency
enforcing.

• Basic-Depth-First. This algorithm shows the efficiency of a
chronological backtracking (it always goes back to the last
scheduled operation).

• Depth-First-with-DCE. This algorithm behaves as the
previous one, but it uses the added DCE heuristic.

4.1    Design of the Data Test

We have defined four types of job-shop scheduling problems.
Each type has a different number of jobs, operations and
resources (see Table 1). We have randomly generated 50
problems of each type. The number of operations may vary, but
the number of jobs and resources cannot.

Table 1.    Types of job-shop scheduling problems

JOBS RESOURCES OPERATIONS
TYPE 1 10 6   60 max.   20 min.
TYPE 2 10 8   80 max.   50 min.
TYPE 3 10 10 100 max.   80 min.
TYPE 4 12 10 120 max. 108 min.

Two parameters allow us to deal with different scheduling
conditions. The range parameter (RG) adjusts the distribution of
the due dates and release dates of the jobs. The bottleneck
parameter (BK) controls the number of bottleneck resources. In
each problem type, we have three different values of the range
parameter (RG) and two bottleneck configurations (BK) (see
Table 2). Moreover, the operation durations were randomly
obtained from two different distributions, depending on whether
an operation requires a bottleneck resource or not.

Table 2.    Comparison of the heuristic methods, which is used in the algorithms Basic-Depth-First and Depth-First-with-DCE vs.
Chronological Backtracking (over 5 sets of 40 job-shop problems). Standard deviations appear in brackets

Performance of the heuristic method

CHRONOLOGICAL
BACKTRACKING

BASIC-DEPTH-
FIRST

DEPTH-FIRST-WITH-DCE
K=4                 K=8

Search Efficiency (*) 0.12  (0.15) 0.48  (0.44) 0.68  (0.30) 0.85  (0.33)RG=0.2
BK=1 Solved Experiments 1 17 17 17

Search Efficiency (*) 0.12  (0.15) 0.64  (0.43) 0.75  (0.32) 0.86  (0.29)RG=0.2
BK=2 Solved Experiments 1 24 24 24

Search Efficiency (*) 0.17  (0.24) 0.83  (0.33) 0.89  (0.23) 0.92  (0.19)RG=0.1
BK=1 Solved Experiments 3 33 34 34

Search Efficiency (*) 0.17  (0.24) 0.91  (0.26) 0.93  (0.20) 0.94  (0.16)RG=0.1
BK=2 Solved Experiments 3 36 36 36

Search Efficiency (*) 0.15  (0.20) 0.96  (0.20) 0.96  (0.17) 0.97  (0.14)RG=0.0
BK=1 Solved Experiments 2 38 38 38

Search Efficiency (*) 0.15  (0.20) 0.76  (0.34) 0.84  (0.25) 0.91  (0.23)
TOTAL

Solved Experiments 10 148 149 149

(*)  obtained by dividing the total number of problem’s operations by the number of generated nodes in
the solution search. In this way, the maximum efficiency is 1

4.2    Algorithm Comparison

Since a depth-bound was set in the solution search, when more
than 800 states are generated, the search process stops. In this
case, we assume the problem is probably nonfeasible.

 The obtained results are summarized in Table 2. As we
thought, the chronological backtracking method is not enough to
solve complex job-shop problems. In spite of the low rate of
found solutions, the efficiency is appropriate enough (it is 0.85
with RG=0.2, BK=1 and consistency level k=8). This efficiency
rate is due to the fact that we have also considered the
unsatisfied problems in the efficiency calculation. Hence, the



proposed heuristic technique is capable of stopping the search
when it deals with unfeasible problems (the process does not
expect to find a feasible solution).

BASIC-DEPTH-FIRST DEPTH-FIRST-WITH-DCE

26% N* 74% F

0% N

74.5% F 25.5% N

0% N*

F: Feasible
N: Non-feasible
N*: Probaby non-feasible

Figure 5.    Comparison of the algorithms BDF and DCE

The results obtained by Basic-Depth-First (BDF) and Depth-
First-With-DCE (DCE) algorithms are presented in Figure 4.
26% of the problems tested by BDF were declared probably
nonfeasible (more than 800 states were generated), whereas DCE
classified them as feasible and nonfeasible problems.
Consequently, the BDF algorithm is not capable of properly
determining whether the problem is feasible or not. However, the
results are inverted in the DCE algorithm: all the problems for
which the solution is not found are unfeasible.

5    CONCLUSIONS

In this paper, a variation of the job-shop scheduling problem, in
which operations have to be performed within fixed temporal
windows, has been analyzed. We refer to these problems as job-
shop CSPs because operations must accomplish precedence and
capacity constraints. Job-shop CSP problems cannot be solved
with traditional scheduling techniques such as priority dispatch
rules, one-pass scheduling techniques [5, 7] or traditional linear
programming techniques of Operational Research.

Our studies are mainly based on Sadeh’s work [8, 9, 10]. In
his work, the CSP paradigm is applied to this kind of problems,
demonstrating that CSP methods are promising alternatives to
traditional scheduling methods for solving job-shop CSPs. We
have proved propagation techniques and heuristics for variable
and value ordering  (slack probability and find-hole methods) are
useful in solving job-shop scheduling problems. Moreover, these
techniques are able to stop the solving process when a feasible
solution cannot be found. Furthermore, the empirical results
show these heuristic methods can efficiently solve different
types of problems that could not be solved with the traditional
CSPs.
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